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Outlook

→ Phenomenology (Reality?):

Take swampland seriously ⇒ How to make
(single-field) inflation compatible with it?

Consistent low-energy model-building restricted by UV completion of
gravity!

→ Theoretical considerations:

Is the Bunch-Davies vacuum unnatural from
the perspective of cosmology? ⇒ But there exists a mechanism (the
no-boundary wave function) to get the BD vacuum from quantum gravity.

Recent objections against the Hartle-Hawking proposal totally independent
of the Swampland.

→ Confrontation:

Swampland points towards deviations from the BD
vacuum ⇒ Non-BD put the possibility of the swampland on a stronger
footing!

But perhaps some quantum gravity corrections can rescue the
Bunch-Davies vacuum?

To tackle issues of QG in dS ⇒ Understand aspects of QFT in dS better

Suddhasattwa Brahma Swampland & BD vacuum 2/18



Outlook

→ Phenomenology (Reality?): Take swampland seriously ⇒ How to make
(single-field) inflation compatible with it?

Consistent low-energy model-building restricted by UV completion of
gravity!

→ Theoretical considerations:

Is the Bunch-Davies vacuum unnatural from
the perspective of cosmology? ⇒ But there exists a mechanism (the
no-boundary wave function) to get the BD vacuum from quantum gravity.

Recent objections against the Hartle-Hawking proposal totally independent
of the Swampland.

→ Confrontation:

Swampland points towards deviations from the BD
vacuum ⇒ Non-BD put the possibility of the swampland on a stronger
footing!

But perhaps some quantum gravity corrections can rescue the
Bunch-Davies vacuum?

To tackle issues of QG in dS ⇒ Understand aspects of QFT in dS better

Suddhasattwa Brahma Swampland & BD vacuum 2/18



Outlook

→ Phenomenology (Reality?): Take swampland seriously ⇒ How to make
(single-field) inflation compatible with it?

Consistent low-energy model-building restricted by UV completion of
gravity!

→ Theoretical considerations:

Is the Bunch-Davies vacuum unnatural from
the perspective of cosmology? ⇒ But there exists a mechanism (the
no-boundary wave function) to get the BD vacuum from quantum gravity.

Recent objections against the Hartle-Hawking proposal totally independent
of the Swampland.

→ Confrontation:

Swampland points towards deviations from the BD
vacuum ⇒ Non-BD put the possibility of the swampland on a stronger
footing!

But perhaps some quantum gravity corrections can rescue the
Bunch-Davies vacuum?

To tackle issues of QG in dS ⇒ Understand aspects of QFT in dS better

Suddhasattwa Brahma Swampland & BD vacuum 2/18



Outlook

→ Phenomenology (Reality?): Take swampland seriously ⇒ How to make
(single-field) inflation compatible with it?

Consistent low-energy model-building restricted by UV completion of
gravity!

→ Theoretical considerations: Is the Bunch-Davies vacuum unnatural from
the perspective of cosmology? ⇒ But there exists a mechanism (the
no-boundary wave function) to get the BD vacuum from quantum gravity.

Recent objections against the Hartle-Hawking proposal totally independent
of the Swampland.

→ Confrontation:

Swampland points towards deviations from the BD
vacuum ⇒ Non-BD put the possibility of the swampland on a stronger
footing!

But perhaps some quantum gravity corrections can rescue the
Bunch-Davies vacuum?

To tackle issues of QG in dS ⇒ Understand aspects of QFT in dS better

Suddhasattwa Brahma Swampland & BD vacuum 2/18



Outlook

→ Phenomenology (Reality?): Take swampland seriously ⇒ How to make
(single-field) inflation compatible with it?

Consistent low-energy model-building restricted by UV completion of
gravity!

→ Theoretical considerations: Is the Bunch-Davies vacuum unnatural from
the perspective of cosmology? ⇒ But there exists a mechanism (the
no-boundary wave function) to get the BD vacuum from quantum gravity.

Recent objections against the Hartle-Hawking proposal totally independent
of the Swampland.

→ Confrontation:

Swampland points towards deviations from the BD
vacuum ⇒ Non-BD put the possibility of the swampland on a stronger
footing!

But perhaps some quantum gravity corrections can rescue the
Bunch-Davies vacuum?

To tackle issues of QG in dS ⇒ Understand aspects of QFT in dS better

Suddhasattwa Brahma Swampland & BD vacuum 2/18



Outlook

→ Phenomenology (Reality?): Take swampland seriously ⇒ How to make
(single-field) inflation compatible with it?

Consistent low-energy model-building restricted by UV completion of
gravity!

→ Theoretical considerations: Is the Bunch-Davies vacuum unnatural from
the perspective of cosmology? ⇒ But there exists a mechanism (the
no-boundary wave function) to get the BD vacuum from quantum gravity.

Recent objections against the Hartle-Hawking proposal totally independent
of the Swampland.

→ Confrontation: Swampland points towards deviations from the BD
vacuum ⇒ Non-BD put the possibility of the swampland on a stronger
footing!

But perhaps some quantum gravity corrections can rescue the
Bunch-Davies vacuum?

To tackle issues of QG in dS ⇒ Understand aspects of QFT in dS better

Suddhasattwa Brahma Swampland & BD vacuum 2/18



Outlook

→ Phenomenology (Reality?): Take swampland seriously ⇒ How to make
(single-field) inflation compatible with it?

Consistent low-energy model-building restricted by UV completion of
gravity!

→ Theoretical considerations: Is the Bunch-Davies vacuum unnatural from
the perspective of cosmology? ⇒ But there exists a mechanism (the
no-boundary wave function) to get the BD vacuum from quantum gravity.

Recent objections against the Hartle-Hawking proposal totally independent
of the Swampland.

→ Confrontation: Swampland points towards deviations from the BD
vacuum ⇒ Non-BD put the possibility of the swampland on a stronger
footing!

But perhaps some quantum gravity corrections can rescue the
Bunch-Davies vacuum?

To tackle issues of QG in dS ⇒ Understand aspects of QFT in dS better

Suddhasattwa Brahma Swampland & BD vacuum 2/18



Suddhasattwa Brahma Swampland & BD vacuum 2/18



Consistent model-building for
single-field inflation
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Swampland and inflation

→ String theory imposes strong restrictions on the class of 4-D effective
field theories allowed as a consistent starting point ⇒ Swampland: An
encouraging development – ‘not-anything-goes’ in cosmological
model-building.

→ Particularly for early-universe cosmology, swampland criteria puts severe
constraints on the plethora of inflationary models ⇒ similar constraints on
late-time acceleration. [L. Heisenberg, M. Bartelmnn, R. Brandenberger & A. Refregier]

→ Some initial suggestions that all single-field models of inflation are ruled
out by the Swampland [W. Kinney, S. Vagnozzi & L.Visinelli; A. Achúcarro & G. Palma;

S. Garg & C. Krishnan,. . . ]

→ Different approaches rescuing single-field models of inflation from the
swampland ⇒ Having a non-Bunch-Davies initial state is one of the more
‘promising’ ones. [S.B. & W. Hossain; S. Das; A. Ashoorioon; C.-M. Lin, K.-W. Ng & K.

Cheung; . . . ]

→ Greater significance of the non-BD state ⇒ More natural than the BD
vacuum for inflation? [R. Brandenberger & J. Martin, 2001; L. Hui & W. Kinney, 2002;

K. Goldstein & D. Lowe, 2002; R. Holman & A. Tolley, 2007; . . . ]
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Constraints on Single-field inflation

→ The Swampland constraints are as follows [P. Agrawal, G. Obeid, P. Steinhardt

& C. Vafa; H. Ooguri & C. Vafa]:

S1: The range of excursion for a scalar field is bounded from above by
|∆ϕ| < ∆ ∼ O(1)

S2: The slope of the scalar field potential satisfies a lower bound
|V ′|/V > c ∼ O(1) with V > 0.

→ Naively, serious conflict with usual slow-roll definition εV ∼ c2/2 ∼ O(1)!
Of course, the parameter c does not have be exactly O(1) but say c ∼ 0.5
⇒ Conjectures are parametric! [M. Dias, J. Frazer, A. Retolaza & A. Westphal]

→ Real problem is the small observed values of r < 0.07 and from the
single-field consistency relation r = 16ε ⇒ ε ≤ 4.4× 10−3 → c < O(0.1).

→ Need to violate the consistency relation above ⇒ Going beyond vanilla
‘single-clock’ models of inflation by adding new dofs → Multi-field models
of inflation (curvaton), warm inflation (radiation), . . . [A. Kehagias & A. Riotto;

S. Das;. . . ]

→ Choose a non-BD state for the fluctuations – no additional field for the
duration of inflation [S.B. & W. Hossain; A. Ashoorioon]
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Non-Bunch-Davies Initial state
→ For generic excited states:

Pη(k) =
H2

2εM2
p

1

2k3
|α(s)

k + β
(s)
k |

2

Pp
h (k) =

4H2

M2
p

1

2k3
|α(t)

k + β
(t)
k |

2

with |αk |2 − |βk |2 = 1 and β(s)(t)(k)→ 0 sufficiently fast subject to back
reaction constraints.

→ Tensor-to-scalar ratio: r =
ΣpP

p
h

Pζ
= 16ε

|α(t)
k

+β
(t)
k
|2

|α(s)
k

+β
(s)
k
|2

=: 16ε γ

→ If γ < 1 ⇒ r can be suppressed even for c ∼ O(1). [S.B. & W. Hossain]

→ Two ways to achieve γ < 1

|β(s)| > 1 ⇒ Large excitation numbers for scalar modes ⇒
unacceptably high values of local NG for c ∼ O(1)

|β(t)| > 1 ⇒ Populated tensor modes with opposite phase ⇒ No

conflict with observed NG & new scale of physics for tensor

perturbations M ∼ 38H [A. Ashoorioon]
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Example: Quintessential inflation
→ Quintessential inflation with a steep potential and a brane correction
term [T. Shiromizu, K. Maeda & M. Sasaki, 2000; V. Sahni, M. Sami & T. Souradeep, 2002]

H2 =
ρ

3M2
p

(
1 +

ρ

2λB

)
→ Modified slow-roll parameters [R. Maartens, D. Wands, B. Bassett & I. Heard, 2000]

ε = εV
1 + V /λB

(1 + V /2λB)2

η = ηV (1 + V /2λB)−1

λB is the brane tension and V is the scalar potential.

→ Clearly shows that ε� 1 possible even when εV ∼ c2/2 ∼ O(1) due to
additional friction terms. Not specific to this model ⇒ similar “magnetic
drift” term in chromo-natural inflation. [P. Adshead & M. Wyman, 2012]

Typically, εV can be large in these class of models.

→ An obstruction is r = 24/(N + 1) for these models ⇒ ruled out by
observations for N ∼ 60.

→ Non-BD states can suppress r also for this class of models, to turn them
viable, as before.
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drift” term in chromo-natural inflation. [P. Adshead & M. Wyman, 2012]

Typically, εV can be large in these class of models.

→ An obstruction is r = 24/(N + 1) for these models ⇒ ruled out by
observations for N ∼ 60.

→ Non-BD states can suppress r also for this class of models, to turn them
viable, as before.
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The Quantum Swampland?
→ Even if there are no classical potential with a meta-stable dS ⇒ Can
radiative (loop) corrections stabilize to point a way out of the swampland?

NO! [U. Danielsson]

→ One-loop effective potential (first 2 terms cancel for softly-broken susy)
[M. Cicoli, J. Conlon & F. Quevedo, 2007]

V Q =
1

64π2


���

���
���:

0

Λ4STr(m0) ln

(
Λ2

µ2

)
+���

���:
0

2Λ2STr(m2) + STr

(
m4 ln

(
m2

Λ2

))
→ One gets that the dS-invariant third term alone only on choosing the
Bunch-Davies vacuum! [J. Martin, 2012]

But how natural is it to assume the BD vacuum? [Polyakov. . . vs. Susskind . . . ]

→ If we make a mode expansion, and trace a given mode back in time until
it is so blue-shifted that its wavelength is much smaller than Hubble scale.
Then it is so far inside the horizon that it does not “feel” gravity and we can
‘forget’ about dS space and pick the unique Minkowski vacuum: ak(η0)|0η0〉
with η0 → −∞, then we get the BD vacuum. [U. Danielsson, 2004; 2005]

→ Should not blue-shift a mode beyond the cut-off scale of the theory ⇒
More natural to pick an instantaneous Minkowski vacuum for this mode at
this cut-off ⇒ Below cut-off scale, new vacuum is Bogolubov transformation
of BD, i.e Non-BD state ⇒ Quantum swampland!
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Bunch-Davies (à la Hartle and
Hawking) doomed?

Suddhasattwa Brahma Swampland & BD vacuum 7/18



The no-boundary proposal - I

→ Famous idea of the no-boundary wave function of the universe due
to Hartle & Hawking → Wave function specified by the value of the
3−metric and spatial field configuration on a final spacelike surface Σ

Ψ = Ψ[hab, χ]

→ NBWF: The quantum mechanical amplitude for a given
three-geometry Σ is given by the Feynman path integral over all
compact four-geometries bounded only by Σ ⇒ Resolution of classical
big-bang singularity.

→ Quantum completion for inflation ⇒ NBWF explains the quantum
origin of spacetime and provides initial condition for inflation.

→ Important for us: NBWF predicts classical Lorentzian, inflating
spacetime with the Bunch-Davies vacuum ⇒ A priori, not guaranteed.

→ A complementary interpretation is that the universe nucleates out
of “nothing”, since the total Hamiltonian for the system vanishes
on-shell.[A. Vilenkin, 1982]
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The no-boundary proposal - II

→ Restrict to minisuperspace, spatially closed cosmologies with a
cosmological constant or a single scalar field.

→ Saddle-point approximation [J. Hartle & S. Hawking, 1983]

Ψ[hab, χ] :=

∫ (h,χ)

D[g ]D[ϕ]e−S[g ,ϕ]/~ ≈
∑
ext

cexte
−Sext[hab,χ]/~

→ No-boundary saddle-points: Extrema of the action (generally
complex but Euclidean for the simplest cases), with (hab, χ) on the
boundary at late times and are regular everywhere else.

→ For minisuperspace models, this implies the boundary conditions
a(0) = 0, ϕ̇(0) = 0. (Regularity at the South Pole).

→ Dynamics governed by Einstein gravity ⇒ There is a
one-parameter family of solutions of no-boundary instantons, specified
for the value of the scalar field at the ‘South Pole’.
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Left: A typical time contour over the complex time, where
X = π/2H0. Right: Euclidean and Lorentzian manifold along the
given time contour.
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Hartle-Hawking doomed?

→ Euclidean
∫ hD[g ]e−SE/~ (compact Euclidean 4-geometries

bounded by h) vs. Lorentzian
∫ h

∅ D[g ]e iS/~ (Lorentzian 4-geometries
interpolating between a vanishing initial 3-geometries and h).

→ Cosmological Euclidean path integral plagued by divergences ⇒
Conformal mode problem renders unbounded from below

→ Ambiguity in the choosing the contour of integration [J. Halliwell]

⇒The PI for real Lorentzian metrics cannot be deformed to a
Euclidean contour, which corresponds to the HH saddle-point.[J.

Feldbrugge, J. Lehners & N. Turok, 2017]

→ Work with the Lorentzian path integral (with real lapse) and use
Picard-Lefshetz theory to improve the convergence property of
oscillatory integrals ⇒ Cauchy’s theorem allows us deform a complex
integration contour while PL tells us how to deform it.

→ The path integral amplitude for a tensor perturbation φ1 on the
final 3−geometry is doomed due to an inverse-Gaussian weighting∫
D[g ] e iS[g ]/~ ∝ exp(−12π2

~Λ +
3l(l+1)(l+2)φ2

1

2~Λ )
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Hartle-Hawking rescued by (loop)
quantum gravity
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Loop quantum gravity corrections

→ Basic continuum quantities of spatial geometry, such as areas and
volumes, are represented by operators with discrete spectra.
An infinitesimal change of these quantities in time — or, more
geometrically, the extrinsic curvature of space — no longer has a linear and
local expression in space but is instead exponentiated and extended
one-dimensionally, along an eponymous loop.[A. Ashtekar, M. Bojowald, J.

Lewandowski, C. Rovelli, L. Smolin, T. Thiemann . . . ]

→ For a cosmological model, they imply two main corrections:

Holonomy modifications: No operator for extrinsic curvature ȧ or the
Hubble parameter ȧ/a ⇒ Well-defined operators only for SU(2)
holonomy matrix elements, which are periodic functions such as
ȧ→ sin(`(a)ȧ)/`(a) with `(a) ∼ lP/a.

Inverse-volume corrections: Using ĥ−1[ĥ,
√
â] = − 1

2
~`â−1/2 (where

ĥ = ̂exp(i`pa)) to get a−1 = f (a)/a with f (a) some quantum correction
function which goes to 1 for large a. The small-a behaviour eliminates
the divergence of a direct inverse at a = 0.
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√
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ȧ→ sin(`(a)ȧ)/`(a) with `(a) ∼ lP/a.

Inverse-volume corrections: Using ĥ−1[ĥ,
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Loop corrections in the no-boundary proposal

→ In the path integral form for the no-boundary proposal, this implies
replacing the Einstein-Hilbert action by an effective LQC action, which
includes the said corrections.

→ In the canonical picture, instead of solving the standard WDW operator,
one solves a “difference” equation in LQC ⇒ Quantum geometry
corrections imply a modified Hamiltonian constraint in ĤLQC Ψ = 0. Still
need boundary conditions for specific solutions.
Naturally, the Friedmann equation is also modified in LQC as a result.

→ The role played by modified constraints crucial in LQG ⇒ They result
in deformed gauge transformations. Since background is modified, covariant
perturbatons imply an effective line-element ds2

β = −βN2dt2 + a(t)2dΩk

where β(a, ȧ) changes sign at large curvature resulting in dynamical
signature change.

South-Pole regularity conditions modified for LQC –
EH: a(0) = 0, ȧ(0) = 1 ⇔ LQC: a(0) = 0, ȧ(0) = 0
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Hartle-Hawking proposal: Recap
→ For minisuperspace cosmologies, in the saddle-point
approximation, the no-boundary wavefunction simplifies

ΨHH[ã, χ] ≈ e−S
EH
E [ã,χ]/~

→ For simplest models, say with only a cosmological constant, our
(Lorentzian) universe tunnels from nothing via an Euclidean region.

→ Friedmann equation: ȧ2 = −V(a) and on-shell action

SEH
E = − 3π

2

∫ ã

0
a
√
|V(a)|.

The nucleation probability of a universe P ' e−2SLQC
E .
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Pure de Sitter
[S.B. & D.-h. Yeom, 2018]

−ȧ2 = V :=
8πa2

3
f 2(a)

[
ρ

f (a)
− ρ1

] [
ρ2 − ρ

f (a)

ρc

]

-4 -3 -2 -1
Τ

0.5

1.0

1.5

aHΤL

4.0 4.5 5.0 5.5 6.0
log ALQC

3.5

4.0

4.5

-2SE
LQC
-ALQC�4

→ A typical solution a(τ) for some numerical values of Λ & lPl .

→−2SLQC
E ' A

4
+ c + d logA, d > 0 where A = 4πã2

→ LQC correction rather small ⇒ There is a potential barrier for both EH
(−ȧ2 ∼ −1 + Λa2) and LQC scenarios.
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Massless scalar field
→ Usual KG equation ϕ̈+ 3Hϕ̇ = 0 ⇒ ϕ̇ = 0 and non-dynamical solution.
In EH theory, no way to get interesting solutions.

→ Modified equations of motion [S.B. & D.-h. Yeom, 2018]

V =
8πG

3
a2f 2(a)

[
a6π

4
√

3γ3 l6
Pl

(
ρ

ρc

)(
g(a)

f (a)

)
− ρ1

] [
1

ρc

(
ρ2 −

a6π

4
√

3γ3 l6
Pl

(
ρ

ρc

)(
g(a)

f (a)

))]

ϕ̈−
(

Ḃ(a)

B(a)

)
ϕ̇ = 0 Classically, B(a) ∼ a−3 & B(a) ∼ a12

in QG regime

→ New instantonic solutions for NBWF ⇔ New physical interpretations for
LQC
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Loops rescue the no-boundary proposal
→ Euclidean path integral diverges for Λ > 0 for all contours of the lapse ⇒
Lorentzian path integral can be made well-defined by applying
Piecard-Lefshetz theory to yield a convergent integral by deforming the
lapse contour.

→ Unsuppressed runaway perturbations on the final 3-geometry due to an
inverse Gaussian weighting for perturbations ⇒ Old problem of the scale

factor having wrong-sign kinetic term. S =
∫

dtN
(
−3a ȧ2

N2 +a3 φ̇2

2N2 + . . .
)

[J.

Feldbrugge, J.-l. Lehners & N. Turok, 2017]

→ Dynamical signature change in makes these inverted Gaussians have the
correct sign for having a Bunch-Davies state at the onset of inflation. [M.

Bojowald & S.B., 2018]

→ Signature change more general than LQG and appears in other
approaches. [J. Ambjorn, D. Coumbe, J. Gizbert-Studnicki & J. Jurkiewicz, 2011; A. Stern

& C. Xu, 2018]
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Timeless stability of perturbations

→ The mode equation

v̈ ≈ 1
4

(
(n − 2ε)(n + 2) + ε(ε+ 2)− β N2`(`+2)

c2

)
v
t2 ,

and its solution is v+ = v1t
1
2 (1+γ) where

γ =

√
1 + n(n + 2)− β `(`+ 2)N2

c2

→ For EH, β = 1, n = 0 = ε, γ and the solutions v± have branch cuts
on the real N-axis ⇒ The action evaluated on the regular solution v+

is equal to S+(v1) = 1
4N
−1(γ − 1)v2

1 and has a negative imaginary part
above the branch cut. This result leads to a Gaussian with positive
exponent in the path integral of perturbations.

→ With dynamical signature change, that is β < 0, γ is always real
for real N. Its branch cuts in the complex plane are now on the
imaginary N-axis where they do not affect the Lorentzian path
integral ⇒ The action S+ is always real and finite and does not lead
to unbounded contributions to the path integral.
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Summary
→ Conclusions:

Swampland has opened a window of possibilities for cosmologists to
model reality in a consistent manner.

Conceptual reasons to move away from the Bunch-Davies vacuum for
dS ⇒ Ironically, this strengthens the argument for a (quantum)
Swampland.

The no-boundary proposal also seems to suffer from some obstructions
to constructing a BD vacuum for inflation.

Quantum-geometry effects can give us hope as far as BD is concerned
⇒ Confluence of different approaches to quantum gravity might be
fruitful.

→ Looking ahead:

Looking beyond the simplest models of quintessence, what does the
swampland have to say for more sophisticated models (higher
derivative terms, coupled-quintessence, . . . )?

Quantum-geometry corrected Hartle-Hawking proposal gives a new
path towards dS/CFT? (ZEAdS4 = |ΨdS4 |HH) [Anninos, Strominger, Hartle,

Hertog, Hawking . . . ]
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EXTRA SLIDES

Instantaneous Minkowski vacuum: ak(ηk,0)|0, ηk,0〉 = 0 at ηk,0 = − Λ
Hk

Even if it had been possible to find a vacuum already at the classical level,
the quantum contributions are still expected to be much larger than our
fine tuned value of the cosmological constant.

If dS is unstable, there is a spontaneous breakdown of dS invariance at the
quantum level.

The particle production will through conservation of energy drain the
cosmological constant and induce a time dependence.

The process can not end until the cosmological constant has reached zero
⇒ As the Hubble constant decreases in value, the quantum effects go away.
In a time-dependent background, no reason to exclude terms with p 6= −ρ
based on lack of right symmetry.

The inconsistency of the Bunch-Davies vacuum supports a quantum version
of the swampland conjecture.
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Quantum gravity = Quantum space-time
→ The LQG corrections strongly modifies the dynamics through
regularized (diffeomorphism and scalar) constraints.

Example: The effective Friedmann equation in LQC: H2 = 8πG
3
ρ
(

1− ρ
ρc

)
due to the LQC Hamiltonian constraint: H = − 3NV0

8πG
a sin2(`(a) ȧ

N
)/`2(a)

→ Gauge transformations, generated by constraints, represent coordinate
freedom: space-time Lie derivative of a function given by
{f ,H[ε] + D[ξa]} = L(ε/N,ξa+εNa/N)f on-shell (time direction ta = Nna + Na).

→ Hypersurface deformation algebra of classical space-time (generalization
of local Poincaré algebra):{

D(w a
1 ),D(wb

2 )
}

= D (Lw1w
a
2 )

{H(N),D(w a)} = −H (LwN)

{H(N1),H(N2)} = D
(
qab (N1∂bN2 − N2∂bN1)

)
Invariance under HDA implies general

covariance. [Dirac, 1951]

Second-order field equations
invariant under HDA must equal
GR. [Hojman, Kukar̆ & Teitelboim, 1974-76]
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Second-order field equations
invariant under HDA must equal
GR. [Hojman, Kukar̆ & Teitelboim, 1974-76]
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Signature change
→ Modified constraints, including LQG corrections, still form a closed
algebra avoiding gauge anomalies. But deformations appear.

{H(N1),H(N2)} = D
(
βqab (N1∂bN2 − N2∂bN1)

)
, β = d2f

dK2 (β → 1 classical).

→ Both the Lagrangian density (dynamics) as well as the measure
(structure of space-time itself) subject to quantum corrections
S [g ] = 1

2κ

∫
d4x

√
|detg | (R[g ] + · · · ).

→ Field redefinition can absorb β to give standard HDA brackets as long as
β does not change sign. EOMs are obviously still modified due to LQG
corrections, but space-time can be classical locally.

→ ‘Dynamical Signature change’ resolves classical singularity ⇒ New
model of quantum spacetime with no Riemannian structure.

→ Invariant line-elements consistent with the deformed gauge
transformations in LQG ds2 = −βN2dt2 + qab (dxa + Nadt)

(
dxb + Nbdt

)
,

We see how space-time structures are strongly affected by the same
corrections which alter dynamics ⇒ new factor of β in the time-time
component of the space-time line element. Signature change for β < 0
is an immediate consequence.
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Emergence of non-Riemannian geometry
→ Lie algebroid: (A, [., .]A, ρ) with ρ : Γ(A)→ Γ(TB), such that ρ
satisfies a homomorphism of Lie algebras and a Leibnitz identity.

→ Hypersurface deformation brackets form a Lie algebroid → Phase
space (qab,K

ab) forms base manifold → Lagrangian multipliers
(N,Na) forms (4×∞)−dimensional fibers. [C. Blohmann, M.Fernandez & A.

Weinstein, 2010]

→ Deriving HDA: “g-Gaussian” vector fields ⇒ nµLνgµν = 0,
preserving Gaussian form of the metric ds2 = −εdt2 + qabdxadxb.

→ Lie algebroid morphisms can change the deformation function
β(qab,K

ab):[M. Bojowald, S.B., U. Büyükçam & F. D’Ambrosio, 2016]

qab 7→ |β|−1qab generated by base transformations.

N 7→
√
|β|−1N generated by fiber maps (same as a non-standard

normal for β spatially constant).

No algebroid morphisms can remove sgn(β) ⇒ No (global)
Riemannian structure when β changes sign.
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