Swampland and the Bunch-Davies vacuum

Suddhasattwa Brahma

Asia Pacific Center for Theoretical Physics

H0 tension and Swampland: theory confronts reality

In peer review (2018) [arXiv:1809.01277] (with Md. W. Hossain) Phys. Rev. D 98, 083537 (2018) [arXiv:1808.01744] (with D.-h Yeom) Phys. Rev. Lett. 121, 201301 (2018) [arXiv:1810.09871] (with M. Bojowald)

Nov 29, 2018

apctp

(日) (四) (문) (문) (문)

\rightarrow Phenomenology (Reality?):

 \rightarrow Theoretical considerations:

 \rightarrow Confrontation:

To tackle issues of QG in dS \Rightarrow Understand aspects of QFT in dS better

-

 \rightarrow Phenomenology (Reality?): Take swampland seriously \Rightarrow How to make (single-field) inflation compatible with it?

 \rightarrow Theoretical considerations:

 \rightarrow Confrontation:

To tackle issues of QG in dS \Rightarrow Understand aspects of QFT in dS better

 \rightarrow Phenomenology (Reality?): Take swampland seriously \Rightarrow How to make (single-field) inflation compatible with it?

Consistent low-energy model-building *restricted* by UV completion of gravity!

 \rightarrow Theoretical considerations:

 \rightarrow Confrontation:

To tackle issues of QG in $dS \Rightarrow$ Understand aspects of QFT in dS better

 \rightarrow Phenomenology (Reality?): Take swampland seriously \Rightarrow How to make (single-field) inflation compatible with it?

Consistent low-energy model-building *restricted* by UV completion of gravity!

 \rightarrow Theoretical considerations: Is the Bunch-Davies vacuum unnatural from the perspective of cosmology? \Rightarrow But there *exists* a mechanism (the no-boundary wave function) to get the BD vacuum from quantum gravity.

 \rightarrow Confrontation:

To tackle issues of QG in $dS \Rightarrow$ Understand aspects of QFT in dS better

 \rightarrow Phenomenology (Reality?): Take swampland seriously \Rightarrow How to make (single-field) inflation compatible with it?

Consistent low-energy model-building *restricted* by UV completion of gravity!

 \rightarrow Theoretical considerations: Is the Bunch-Davies vacuum unnatural from the perspective of cosmology? \Rightarrow But there *exists* a mechanism (the no-boundary wave function) to get the BD vacuum from quantum gravity.

Recent objections against the Hartle-Hawking proposal totally independent of the Swampland.

 \rightarrow Confrontation:

To tackle issues of QG in dS \Rightarrow Understand aspects of QFT in dS better

 \rightarrow Phenomenology (Reality?): Take swampland seriously \Rightarrow How to make (single-field) inflation compatible with it?

Consistent low-energy model-building *restricted* by UV completion of gravity!

→ Theoretical considerations: Is the Bunch-Davies vacuum unnatural from the perspective of cosmology? ⇒ But there *exists* a mechanism (the no-boundary wave function) to get the BD vacuum from quantum gravity. Recent objections against the Hartle-Hawking proposal totally independent

of the Swampland.

 \rightarrow Confrontation: Swampland points towards deviations from the BD vacuum \Rightarrow Non-BD put the possibility of the swampland on a stronger footing!

To tackle issues of QG in $dS \Rightarrow$ Understand aspects of QFT in dS better

(4月) (4日) (4日)

 \rightarrow Phenomenology (Reality?): Take swampland seriously \Rightarrow How to make (single-field) inflation compatible with it?

Consistent low-energy model-building *restricted* by UV completion of gravity!

→ Theoretical considerations: Is the Bunch-Davies vacuum unnatural from the perspective of cosmology? \Rightarrow But there *exists* a mechanism (the no-boundary wave function) to get the BD vacuum from quantum gravity.

Recent objections against the Hartle-Hawking proposal totally independent of the Swampland.

 \rightarrow Confrontation: Swampland points towards deviations from the BD vacuum \Rightarrow Non-BD put the possibility of the swampland on a stronger footing!

But perhaps some quantum gravity corrections can *rescue* the Bunch-Davies vacuum?

To tackle issues of QG in dS \Rightarrow Understand aspects of QFT in dS better

(4月) (4日) (4日)

э.

Consistent model-building for single-field inflation

周レイモレイモル

→ String theory imposes strong restrictions on the class of 4-D effective field theories allowed as a consistent starting point \Rightarrow Swampland: An encouraging development – 'not-anything-goes' in cosmological model-building.

 \rightarrow Particularly for early-universe cosmology, swampland criteria puts severe constraints on the plethora of inflationary models \Rightarrow similar constraints on *late-time acceleration*. [L. Heisenberg, M. Bartelman, R. Brandenberger & A. Refregier]

→ Some initial suggestions that all single-field models of inflation are ruled out by the Swampland [W. Kinney, S. Vagnozzi & L.Visinelli; A. Achúcarro & G. Palma; S. Garg & C. Krishnan,...]

 \rightarrow Different approaches rescuing single-field models of inflation from the swampland \Rightarrow Having a non-Bunch-Davies initial state is one of the more 'promising' ones. [S.B. & W. Hossain; S. Das; A. Ashoorioon; C.-M. Lin, K.-W. Ng & K. Cheung; ...]

→ Greater significance of the non-BD state \Rightarrow More natural than the BD vacuum for inflation? [R. Brandenberger & J. Martin, 2001; L. Hui & W. Kinney, 2002; K. Goldstein & D. Lowe, 2002; R. Holman & A. Tolley, 2007; ...]

→ String theory imposes strong restrictions on the class of 4-D effective field theories allowed as a consistent starting point \Rightarrow Swampland: An encouraging development – 'not-anything-goes' in cosmological model-building.

 \rightarrow Particularly for early-universe cosmology, swampland criteria puts severe constraints on the plethora of inflationary models \Rightarrow similar constraints on *late-time acceleration*. [L. Heisenberg, M. Bartelman, R. Brandenberger & A. Refregier]

→ Some initial suggestions that all single-field models of inflation are ruled out by the Swampland [W. Kinney, S. Vagnozzi & L.Visinelli; A. Achúcarro & G. Palma; S. Garg & C. Krishnan,...]

 \rightarrow Different approaches rescuing single-field models of inflation from the swampland \Rightarrow Having a non-Bunch-Davies initial state is one of the more 'promising' ones. [S.B. & W. Hossain; S. Das; A. Ashoorioon; C.-M. Lin, K.-W. Ng & K. Cheung; ...]

→ Greater significance of the non-BD state \Rightarrow More natural than the BD vacuum for inflation? [R. Brandenberger & J. Martin, 2001; L. Hui & W. Kinney, 2002; K. Goldstein & D. Lowe, 2002; R. Holman & A. Tolley, 2007; ...]

ALCONOMIC A DESCRIPTION

→ String theory imposes strong restrictions on the class of 4-D effective field theories allowed as a consistent starting point \Rightarrow Swampland: An encouraging development – 'not-anything-goes' in cosmological model-building.

 \rightarrow Particularly for early-universe cosmology, swampland criteria puts severe constraints on the plethora of inflationary models \Rightarrow similar constraints on *late-time acceleration*. [L. Heisenberg, M. Bartelman, R. Brandenberger & A. Refregier]

→ Some initial suggestions that all single-field models of inflation are ruled out by the Swampland [W. Kinney, S. Vagnozzi & L.Visinelli; A. Achúcarro & G. Palma; S. Garg & C. Krishnan,...]

 \rightarrow Different approaches rescuing single-field models of inflation from the swampland \Rightarrow Having a non-Bunch-Davies initial state is one of the more 'promising' ones. [S.B. & W. Hossain; S. Das; A. Ashoorioon; C.-M. Lin, K.-W. Ng & K. Cheung; ...]

→ Greater significance of the non-BD state \Rightarrow More natural than the BD vacuum for inflation? [R. Brandenberger & J. Martin, 2001; L. Hui & W. Kinney, 2002; K. Goldstein & D. Lowe, 2002; R. Holman & A. Tolley, 2007; ...]

ALCONOMIC A DESCRIPTION

→ String theory imposes strong restrictions on the class of 4-D effective field theories allowed as a consistent starting point \Rightarrow Swampland: An encouraging development – 'not-anything-goes' in cosmological model-building.

 \rightarrow Particularly for early-universe cosmology, swampland criteria puts severe constraints on the plethora of inflationary models \Rightarrow similar constraints on *late-time acceleration*. [L. Heisenberg, M. Bartelman, R. Brandenberger & A. Refregier]

→ Some initial suggestions that all single-field models of inflation are ruled out by the Swampland [W. Kinney, S. Vagnozzi & L.Visinelli; A. Achúcarro & G. Palma; S. Garg & C. Krishnan,...]

→ Different approaches rescuing single-field models of inflation from the swampland \Rightarrow Having a non-Bunch-Davies initial state is one of the more 'promising' ones. [S.B. & W. Hossain; S. Das; A. Ashoorioon; C.-M. Lin, K.-W. Ng & K. Cheung; ...]

→ Greater significance of the non-BD state \Rightarrow More natural than the BD vacuum for inflation? [R. Brandenberger & J. Martin, 2001; L. Hui & W. Kinney, 2002; K. Goldstein & D. Lowe, 2002; R. Holman & A. Tolley, 2007; ...]

4 **A** N A **A** N A **A** N

→ String theory imposes strong restrictions on the class of 4-D effective field theories allowed as a consistent starting point \Rightarrow Swampland: An encouraging development – 'not-anything-goes' in cosmological model-building.

 \rightarrow Particularly for early-universe cosmology, swampland criteria puts severe constraints on the plethora of inflationary models \Rightarrow similar constraints on *late-time acceleration*. [L. Heisenberg, M. Bartelman, R. Brandenberger & A. Refregier]

→ Some initial suggestions that all single-field models of inflation are ruled out by the Swampland [W. Kinney, S. Vagnozzi & L.Visinelli; A. Achúcarro & G. Palma; S. Garg & C. Krishnan,...]

→ Different approaches rescuing single-field models of inflation from the swampland \Rightarrow Having a non-Bunch-Davies initial state is one of the more 'promising' ones. [S.B. & W. Hossain; S. Das; A. Ashoorioon; C.-M. Lin, K.-W. Ng & K. Cheung; ...]

→ Greater significance of the non-BD state ⇒ More natural than the BD vacuum for inflation? [R. Brandenberger & J. Martin, 2001; L. Hui & W. Kinney, 2002; K. Goldstein & D. Lowe, 2002; R. Holman & A. Tolley, 2007; ...]

ALCONOMIC A DESCRIPTION

→ The Swampland constraints are as follows [P. Agrawal, G. Obeid, P. Steinhardt & C. Vafa; H. Ooguri & C. Vafa]:

- S1: The range of excursion for a scalar field is bounded from above by $|\Delta \varphi| < \Delta \sim O(1)$
- S2: The slope of the scalar field potential satisfies a lower bound $|V'|/V > c \sim \mathcal{O}(1)$ with V > 0.

→ Naively, serious conflict with usual slow-roll definition $\epsilon_V \sim c^2/2 \sim \mathcal{O}(1)!$ Of course, the parameter c does not have be *exactly* $\mathcal{O}(1)$ but say $c \sim 0.5$ ⇒ Conjectures are parametric! [M. Dias, J. Frazer, A. Retolaza & A. Westphal]

 \rightarrow Real problem is the small observed values of r < 0.07 and from the single-field consistency relation $r = 16\epsilon \Rightarrow \epsilon \leq 4.4 \times 10^{-3} \rightarrow c < \mathcal{O}(0.1)$.

 \rightarrow Need to *violate* the consistency relation above \Rightarrow Going beyond vanilla 'single-clock' models of inflation by adding new dofs \rightarrow Multi-field models of inflation (curvaton), warm inflation (radiation), ... [A. Kehagias & A. Riotto; S. Das;...]

 \rightarrow Choose a non-BD state for the fluctuations – no additional field for the duration of inflation [S.B. & W. Hossain; A. Ashoorioon]

→ The Swampland constraints are as follows [P. Agrawal, G. Obeid, P. Steinhardt & C. Vafa; H. Ooguri & C. Vafa]:

- S1: The range of excursion for a scalar field is bounded from above by $|\Delta \varphi| < \Delta \sim O(1)$
- S2: The slope of the scalar field potential satisfies a lower bound $|V'|/V > c \sim \mathcal{O}(1)$ with V > 0.

→ Naively, serious conflict with usual slow-roll definition $\epsilon_V \sim c^2/2 \sim \mathcal{O}(1)!$ Of course, the parameter c does not have be *exactly* $\mathcal{O}(1)$ but say $c \sim 0.5$ ⇒ Conjectures are parametric! [M. Dias, J. Frazer, A. Retolaza & A. Westphal]

 \rightarrow Real problem is the small observed values of r < 0.07 and from the single-field consistency relation $r = 16\epsilon \Rightarrow \epsilon \leq 4.4 \times 10^{-3} \Rightarrow c < \mathcal{O}(0.1)$.

 \rightarrow Need to *violate* the consistency relation above \Rightarrow Going beyond vanilla 'single-clock' models of inflation by adding new dofs \rightarrow Multi-field models of inflation (curvaton), warm inflation (radiation), ... [A. Kehagias & A. Riotto; S. Das;...]

 \rightarrow Choose a non-BD state for the fluctuations – no additional field for the duration of inflation [S.B. & W. Hossain; A. Ashoorioon]

→ The Swampland constraints are as follows [P. Agrawal, G. Obeid, P. Steinhardt & C. Vafa; H. Ooguri & C. Vafa]:

- S1: The range of excursion for a scalar field is bounded from above by $|\Delta \varphi| < \Delta \sim O(1)$
- S2: The slope of the scalar field potential satisfies a lower bound $|V'|/V > c \sim \mathcal{O}(1)$ with V > 0.

→ Naively, serious conflict with usual slow-roll definition $\epsilon_V \sim c^2/2 \sim \mathcal{O}(1)!$ Of course, the parameter c does not have be *exactly* $\mathcal{O}(1)$ but say $c \sim 0.5$ ⇒ Conjectures are parametric! [M. Dias, J. Frazer, A. Retolaza & A. Westphal]

→ Real problem is the small observed values of r < 0.07 and from the single-field consistency relation $r = 16\epsilon \Rightarrow \epsilon \leq 4.4 \times 10^{-3} \Rightarrow c < O(0.1)$.

 \rightarrow Need to *violate* the consistency relation above \Rightarrow Going beyond vanilla 'single-clock' models of inflation by adding new dofs \rightarrow Multi-field models of inflation (curvaton), warm inflation (radiation), ... [A. Kehagias & A. Riotto; S. Das;...]

 \rightarrow Choose a non-BD state for the fluctuations – no additional field for the duration of inflation [S.B. & W. Hossain; A. Ashoorioon]

→ The Swampland constraints are as follows [P. Agrawal, G. Obeid, P. Steinhardt & C. Vafa; H. Ooguri & C. Vafa]:

- S1: The range of excursion for a scalar field is bounded from above by $|\Delta \varphi| < \Delta \sim O(1)$
- S2: The slope of the scalar field potential satisfies a lower bound $|V'|/V > c \sim \mathcal{O}(1)$ with V > 0.

→ Naively, serious conflict with usual slow-roll definition $\epsilon_V \sim c^2/2 \sim \mathcal{O}(1)!$ Of course, the parameter c does not have be *exactly* $\mathcal{O}(1)$ but say $c \sim 0.5$ ⇒ Conjectures are parametric! [M. Dias, J. Frazer, A. Retolaza & A. Westphal]

→ Real problem is the small observed values of r < 0.07 and from the single-field consistency relation $r = 16\epsilon \Rightarrow \epsilon \leq 4.4 \times 10^{-3} \Rightarrow c < O(0.1)$.

→ Need to *violate* the consistency relation above \Rightarrow Going beyond vanilla 'single-clock' models of inflation by adding new dofs \rightarrow Multi-field models of inflation (curvaton), warm inflation (radiation), ... [A. Kehagias & A. Riotto; S. Das;...]

 \rightarrow Choose a non-BD state for the fluctuations – no additional field for the duration of inflation [S.B. & W. Hossain; A. Ashoorioon]

→ The Swampland constraints are as follows [P. Agrawal, G. Obeid, P. Steinhardt & C. Vafa; H. Ooguri & C. Vafa]:

- S1: The range of excursion for a scalar field is bounded from above by $|\Delta \varphi| < \Delta \sim O(1)$
- S2: The slope of the scalar field potential satisfies a lower bound $|V'|/V > c \sim \mathcal{O}(1)$ with V > 0.

→ Naively, serious conflict with usual slow-roll definition $\epsilon_V \sim c^2/2 \sim \mathcal{O}(1)!$ Of course, the parameter c does not have be *exactly* $\mathcal{O}(1)$ but say $c \sim 0.5$ ⇒ Conjectures are parametric! [M. Dias, J. Frazer, A. Retolaza & A. Westphal]

→ Real problem is the small observed values of r < 0.07 and from the single-field consistency relation $r = 16\epsilon \Rightarrow \epsilon \leq 4.4 \times 10^{-3} \rightarrow c < O(0.1)$.

→ Need to *violate* the consistency relation above \Rightarrow Going beyond vanilla 'single-clock' models of inflation by adding new dofs \rightarrow Multi-field models of inflation (curvaton), warm inflation (radiation), ... [A. Kehagias & A. Riotto; S. Das;...]

 \rightarrow Choose a non-BD state for the fluctuations – no additional field for the duration of inflation [S.B. & W. Hossain; A. Ashoorioon]

 \rightarrow For generic excited states:

$$P_{\eta}(k) = \frac{H^2}{2\epsilon M_{\rho}^2} \frac{1}{2k^3} |\alpha_k^{(s)} + \beta_k^{(s)}|^2$$
$$P_h^{\rho}(k) = \frac{4H^2}{M_{\rho}^2} \frac{1}{2k^3} |\alpha_k^{(t)} + \beta_k^{(t)}|^2$$

with $|\alpha_k|^2 - |\beta_k|^2 = 1$ and $\beta^{(s)(t)}(k) \to 0$ sufficiently fast subject to back reaction constraints.

$$\rightarrow \text{Tensor-to-scalar ratio: } r = \frac{\Sigma_{\rho} P_h^{\rho}}{P_{\zeta}} = 16\epsilon \frac{|\alpha_k^{(t)} + \beta_k^{(t)}|^2}{|\alpha_k^{(s)} + \beta_k^{(s)}|^2} =: 16\epsilon \gamma$$

ightarrow If $\gamma < 1 \Rightarrow r$ can be *suppressed* even for $m{c} \sim \mathcal{O}(1)$. [S.B. & W. Hossain]

- \rightarrow Two ways to achieve $\gamma < 1$
 - $|\beta^{(s)}| > 1 \Rightarrow$ Large excitation numbers for scalar modes \Rightarrow unacceptably high values of local NG for $c \sim \mathcal{O}(1)$
 - |β^(t)| > 1 ⇒ Populated tensor modes with opposite phase ⇒ No conflict with observed NG & new scale of physics for tensor perturbations M ~ 38H [A. Ashoorioon]

 \rightarrow For generic excited states:

$$P_{\eta}(k) = \frac{H^2}{2\epsilon M_{\rho}^2} \frac{1}{2k^3} |\alpha_k^{(s)} + \beta_k^{(s)}|^2$$
$$P_h^{\rho}(k) = \frac{4H^2}{M_{\rho}^2} \frac{1}{2k^3} |\alpha_k^{(t)} + \beta_k^{(t)}|^2$$

with $|\alpha_k|^2 - |\beta_k|^2 = 1$ and $\beta^{(s)(t)}(k) \to 0$ sufficiently fast subject to back reaction constraints.

$$\rightarrow \text{Tensor-to-scalar ratio: } \mathbf{r} = \frac{\Sigma_{\rho} P_{h}^{\rho}}{P_{\zeta}} = 16\epsilon \frac{|\alpha_{k}^{(t)} + \beta_{k}^{(t)}|^{2}}{|\alpha_{k}^{(s)} + \beta_{k}^{(s)}|^{2}} =: 16\epsilon \gamma$$

ightarrow If $\gamma < 1 \Rightarrow$ *r* can be *suppressed* even for *c* ~ $\mathcal{O}(1)$. [S.B. & W. Hossain]

- \rightarrow Two ways to achieve $\gamma < 1$
 - $|\beta^{(s)}| > 1 \Rightarrow$ Large excitation numbers for scalar modes \Rightarrow unacceptably high values of local NG for $c \sim \mathcal{O}(1)$
 - |β^(t)| > 1 ⇒ Populated tensor modes with opposite phase ⇒ No conflict with observed NG & new scale of physics for tensor perturbations M ~ 38H [A. Ashoorioon]

 \rightarrow For generic excited states:

$$P_{\eta}(k) = \frac{H^2}{2\epsilon M_{\rho}^2} \frac{1}{2k^3} |\alpha_k^{(s)} + \beta_k^{(s)}|^2$$
$$P_h^{\rho}(k) = \frac{4H^2}{M_{\rho}^2} \frac{1}{2k^3} |\alpha_k^{(t)} + \beta_k^{(t)}|^2$$

with $|\alpha_k|^2 - |\beta_k|^2 = 1$ and $\beta^{(s)(t)}(k) \to 0$ sufficiently fast subject to back reaction constraints.

$$\rightarrow \text{Tensor-to-scalar ratio: } \mathbf{r} = \frac{\Sigma_{\rho} P_{h}^{\rho}}{P_{\zeta}} = \mathbf{16} \epsilon \frac{|\alpha_{k}^{(t)} + \beta_{k}^{(t)}|^{2}}{|\alpha_{k}^{(s)} + \beta_{k}^{(s)}|^{2}} =: \mathbf{16} \epsilon \gamma$$

 \rightarrow If $\gamma < 1 \Rightarrow r$ can be *suppressed* even for $c \sim \mathcal{O}(1)$. [S.B. & W. Hossain]

- \rightarrow Two ways to achieve $\gamma < 1$
 - $|\beta^{(s)}| > 1 \Rightarrow$ Large excitation numbers for scalar modes \Rightarrow unacceptably high values of local NG for $c \sim \mathcal{O}(1)$
 - |β^(t)| > 1 ⇒ Populated tensor modes with opposite phase ⇒ No conflict with observed NG & new scale of physics for tensor perturbations M ~ 38H [A. Ashoorioon]

 \rightarrow For generic excited states:

$$P_{\eta}(k) = \frac{H^2}{2\epsilon M_{\rho}^2} \frac{1}{2k^3} |\alpha_k^{(s)} + \beta_k^{(s)}|^2$$
$$P_h^{\rho}(k) = \frac{4H^2}{M_{\rho}^2} \frac{1}{2k^3} |\alpha_k^{(t)} + \beta_k^{(t)}|^2$$

with $|\alpha_k|^2 - |\beta_k|^2 = 1$ and $\beta^{(s)(t)}(k) \to 0$ sufficiently fast subject to back reaction constraints.

$$\rightarrow \text{Tensor-to-scalar ratio: } \mathbf{r} = \frac{\Sigma_{\rho} P_{h}^{\rho}}{P_{\zeta}} = \mathbf{16} \epsilon \frac{|\alpha_{k}^{(t)} + \beta_{k}^{(t)}|^{2}}{|\alpha_{k}^{(s)} + \beta_{k}^{(s)}|^{2}} =: \mathbf{16} \epsilon \gamma$$

 \rightarrow If $\gamma < 1 \Rightarrow r$ can be *suppressed* even for $c \sim \mathcal{O}(1)$. [S.B. & W. Hossain]

- \rightarrow Two ways to achieve $\gamma < 1$
 - $|\beta^{(s)}| > 1 \Rightarrow$ Large excitation numbers for scalar modes \Rightarrow unacceptably high values of local NG for $c \sim \mathcal{O}(1)$
 - $|\beta^{(t)}| > 1 \Rightarrow$ Populated tensor modes with opposite phase \Rightarrow No conflict with observed NG & new scale of physics for tensor perturbations $M \sim 38H$ [A. Ashoorioon]

b) a = b, a = b

 \rightarrow Quintessential inflation with a steep potential and a brane correction term [T. Shiromizu, K. Maeda & M. Sasaki, 2000; V. Sahni, M. Sami & T. Souradeep, 2002]

$$H^2 = rac{
ho}{3M_
ho^2}\left(1+rac{
ho}{2\lambda_{
m B}}
ight)$$

ightarrow Modified slow-roll parameters [R. Maartens, D. Wands, B. Bassett & I. Heard, 2000]

$$\epsilon = \epsilon_V \frac{1 + V/\lambda_{\rm B}}{\left(1 + V/2\lambda_{\rm B}\right)^2}$$
$$\eta = \eta_V \left(1 + V/2\lambda_{\rm B}\right)^{-1}$$

 $\lambda_{\rm B}$ is the brane tension and V is the scalar potential.

→ Clearly shows that $\epsilon \ll 1$ possible even when $\epsilon_V \sim c^2/2 \sim \mathcal{O}(1)$ due to additional friction terms. Not specific to this model \Rightarrow similar "magnetic drift" term in chromo-natural inflation. [P. Adshead & M. Wyman, 2012] Typically, ϵ_V can be large in these class of models.

 \rightarrow An obstruction is r = 24/(N+1) for these models \Rightarrow ruled out by observations for $N \sim 60$.

 \rightarrow Quintessential inflation with a steep potential and a brane correction term [T. Shiromizu, K. Maeda & M. Sasaki, 2000; V. Sahni, M. Sami & T. Souradeep, 2002]

$$H^2 = rac{
ho}{3M_
ho^2}\left(1+rac{
ho}{2\lambda_{
m B}}
ight)$$

 \rightarrow Modified slow-roll parameters [R. Maartens, D. Wands, B. Bassett & I. Heard, 2000]

$$\epsilon = \epsilon_{V} \frac{1 + V/\lambda_{\rm B}}{\left(1 + V/2\lambda_{\rm B}\right)^{2}}$$
$$\eta = \eta_{V} \left(1 + V/2\lambda_{\rm B}\right)^{-1}$$

$\lambda_{\rm B}$ is the brane tension and V is the scalar potential.

→ Clearly shows that $\epsilon \ll 1$ possible even when $\epsilon_V \sim c^2/2 \sim \mathcal{O}(1)$ due to additional friction terms. Not specific to this model \Rightarrow similar "magnetic drift" term in chromo-natural inflation. [P. Adshead & M. Wyman, 2012] Typically, ϵ_V can be large in these class of models.

 \rightarrow An obstruction is r=24/(N+1) for these models \Rightarrow ruled out by observations for $N\sim 60.$

 \rightarrow Quintessential inflation with a steep potential and a brane correction term [T. Shiromizu, K. Maeda & M. Sasaki, 2000; V. Sahni, M. Sami & T. Souradeep, 2002]

$$H^2 = rac{
ho}{3M_
ho^2}\left(1+rac{
ho}{2\lambda_{
m B}}
ight)$$

 \rightarrow Modified slow-roll parameters [R. Maartens, D. Wands, B. Bassett & I. Heard, 2000]

$$\epsilon = \epsilon_{V} \frac{1 + V/\lambda_{\rm B}}{\left(1 + V/2\lambda_{\rm B}\right)^{2}}$$
$$\eta = \eta_{V} \left(1 + V/2\lambda_{\rm B}\right)^{-1}$$

 $\lambda_{\rm B}$ is the brane tension and V is the scalar potential.

→ Clearly shows that $\epsilon \ll 1$ possible even when $\epsilon_V \sim c^2/2 \sim \mathcal{O}(1)$ due to additional friction terms. Not specific to this model \Rightarrow similar "magnetic drift" term in chromo-natural inflation. [P. Adshead & M. Wyman, 2012] Typically, ϵ_V can be large in these class of models.

 \rightarrow An obstruction is r=24/(N+1) for these models \Rightarrow ruled out by observations for $N\sim 60.$

 \rightarrow Quintessential inflation with a steep potential and a brane correction term [T. Shiromizu, K. Maeda & M. Sasaki, 2000; V. Sahni, M. Sami & T. Souradeep, 2002]

$${\cal H}^2 = rac{
ho}{3M_
ho^2} \left(1+rac{
ho}{2\lambda_{
m B}}
ight)$$

 \rightarrow Modified slow-roll parameters [R. Maartens, D. Wands, B. Bassett & I. Heard, 2000]

$$\epsilon = \epsilon_{V} \frac{1 + V/\lambda_{\rm B}}{\left(1 + V/2\lambda_{\rm B}\right)^{2}}$$
$$\eta = \eta_{V} \left(1 + V/2\lambda_{\rm B}\right)^{-1}$$

 $\lambda_{\rm B}$ is the brane tension and V is the scalar potential.

→ Clearly shows that $\epsilon \ll 1$ possible even when $\epsilon_V \sim c^2/2 \sim \mathcal{O}(1)$ due to additional friction terms. Not specific to this model \Rightarrow similar "magnetic drift" term in chromo-natural inflation. [P. Adshead & M. Wyman, 2012] Typically, ϵ_V can be large in these class of models.

 \rightarrow An obstruction is r=24/(N+1) for these models \Rightarrow ruled out by observations for $N\sim 60.$

 \rightarrow Quintessential inflation with a steep potential and a brane correction term [T. Shiromizu, K. Maeda & M. Sasaki, 2000; V. Sahni, M. Sami & T. Souradeep, 2002]

$${\cal H}^2 = rac{
ho}{3M_
ho^2}\left(1+rac{
ho}{2\lambda_{
m B}}
ight)$$

 \rightarrow Modified slow-roll parameters [R. Maartens, D. Wands, B. Bassett & I. Heard, 2000]

$$\epsilon = \epsilon_{V} \frac{1 + V/\lambda_{\rm B}}{\left(1 + V/2\lambda_{\rm B}\right)^{2}}$$
$$\eta = \eta_{V} \left(1 + V/2\lambda_{\rm B}\right)^{-1}$$

 $\lambda_{\rm B}$ is the brane tension and V is the scalar potential.

→ Clearly shows that $\epsilon \ll 1$ possible even when $\epsilon_V \sim c^2/2 \sim \mathcal{O}(1)$ due to additional friction terms. Not specific to this model \Rightarrow similar "magnetic drift" term in chromo-natural inflation. [P. Adshead & M. Wyman, 2012] Typically, ϵ_V can be large in these class of models.

 \rightarrow An obstruction is r=24/(N+1) for these models \Rightarrow ruled out by observations for $N\sim 60.$

 \rightarrow Even if there are no *classical* potential with a meta-stable dS \Rightarrow Can radiative (loop) corrections *stabilize* to point a way out of the swampland?

O! [U. Danielsson]

One-loop effective potential (first 2 terms cancel for softly-broken susy)

$$V^{Q} = \frac{1}{64\pi^{2}} \left[\Lambda^{4} STr(m^{0}) \ln\left(\frac{A^{2}}{\mu^{2}}\right)^{+} \frac{1}{2\Lambda^{2}} STr(m^{2})^{+} STr\left(m^{4} \ln\left(\frac{m^{2}}{\Lambda^{2}}\right)\right) \right]$$

 \rightarrow One gets that the dS-invariant third term alone *only* on choosing the Bunch-Davies vacuum! [J. Martin, 2012] But how natural is it to assume the BD uncuum? [Behalam an Sardial

 \rightarrow If we make a mode expansion, and trace a given mode back in time until it is so blue-shifted that its wavelength is much smaller than Hubble scale. Then it is so far inside the horizon that it does not "feel" gravity and we can 'forget' about dS space and pick the unique Minkowski vacuum: $a_k(\eta_0)|0_{\eta_0}\rangle$ with $\eta_0 \rightarrow -\infty$, then we get the BD vacuum. [U. Danielsson, 2004; 2005]

→ Should not blue-shift a mode beyond the cut-off scale of the theory \Rightarrow More natural to pick an instantaneous Minkowski vacuum for this mode at this cut-off \Rightarrow Below cut-off scale, new vacuum is Bogolubov transformation of BD, i.e Non-BD state \Rightarrow Quantum swampland!

 \rightarrow Even if there are no *classical* potential with a meta-stable dS \Rightarrow Can radiative (loop) corrections *stabilize* to point a way out of the swampland? NO! [U. Danielsson]

One-loop effective potential (first 2 terms cancel for softly-broken susy)

$$V^{Q} = \frac{1}{64\pi^{2}} \left[\Lambda^{4} STr(m^{0}) \ln\left(\frac{A^{2}}{\mu^{2}}\right)^{+} \frac{1}{2\Lambda^{2}} STr(m^{2})^{+} STr\left(m^{4} \ln\left(\frac{m^{2}}{\Lambda^{2}}\right)\right) \right]$$

 \rightarrow One gets that the dS-invariant third term alone *only* on choosing the Bunch-Davies vacuum! [J. Martin, 2012] But how natural is it to *assume* the BD vacuum? [Polyakov...vs. Susskind...

 \rightarrow If we make a mode expansion, and trace a given mode back in time until it is so blue-shifted that its wavelength is much smaller than Hubble scale. Then it is so far inside the horizon that it does not "feel" gravity and we can 'forget' about dS space and pick the unique Minkowski vacuum: $a_k(\eta_0)|0_{\eta_0}\rangle$ with $\eta_0 \rightarrow -\infty$, then we get the BD vacuum. [U. Danielsson, 2004; 2005]

→ Should not blue-shift a mode beyond the cut-off scale of the theory \Rightarrow More natural to pick an instantaneous Minkowski vacuum for this mode at this cut-off \Rightarrow Below cut-off scale, new vacuum is Bogolubov transformation of BD, i.e Non-BD state \Rightarrow Quantum swampland!

 \rightarrow Even if there are no *classical* potential with a meta-stable dS \Rightarrow Can radiative (loop) corrections *stabilize* to point a way out of the swampland?

NO! [U. Danielsson]

 \rightarrow One-loop effective potential (first 2 terms cancel for softly-broken susy) [M. Cicoli, J. Conlon & F. Quevedo, 2007]

$$V^{Q} = \frac{1}{64\pi^{2}} \left[\underbrace{\Lambda^{4} STr(m^{0}) \ln\left(\frac{A^{2}}{\mu^{2}}\right)^{+} 2\Lambda^{2} STr(m^{2})}_{+} STr\left(m^{4} \ln\left(\frac{m^{2}}{\Lambda^{2}}\right)\right) \right]$$

 \rightarrow One gets that the dS-invariant third term alone only on choosing the Bunch-Davies vacuum! [J. Martin, 2012]

But how natural is it to assume the BD vacuum? [Polyakov...vs. Susskind ...]

 \rightarrow If we make a mode expansion, and trace a given mode back in time until it is so blue-shifted that its wavelength is much smaller than Hubble scale. Then it is so far inside the horizon that it does not "feel" gravity and we can 'forget' about dS space and pick the unique Minkowski vacuum: $a_k(\eta_0)|0_{\eta_0}\rangle$ with $\eta_0 \rightarrow -\infty$, then we get the BD vacuum. [U. Danielsson, 2004; 2005]

 \rightarrow Should not blue-shift a mode beyond the cut-off scale of the theory \Rightarrow More natural to pick an instantaneous Minkowski vacuum for this mode at this cut-off \Rightarrow Below cut-off scale, new vacuum is Bogolubov transformation of BD, i.e Non-BD state \Rightarrow Quantum swampland!

 \rightarrow Even if there are no *classical* potential with a meta-stable dS \Rightarrow Can radiative (loop) corrections *stabilize* to point a way out of the swampland?

NO! [U. Danielsson]

 \rightarrow One-loop effective potential (first 2 terms cancel for softly-broken susy) [M. Cicoli, J. Conlon & F. Quevedo, 2007]

$$V^{Q} = \frac{1}{64\pi^{2}} \left[\underbrace{\Lambda^{4} STr(m^{0}) \ln\left(\frac{A^{2}}{\mu^{2}}\right)^{+} \underbrace{2\Lambda^{2} STr(m^{2})}_{+} STr\left(m^{4} \ln\left(\frac{m^{2}}{\Lambda^{2}}\right)\right) \right]$$

 \rightarrow One gets that the dS-invariant third term alone *only* on choosing the Bunch-Davies vacuum! [J. Martin, 2012] But how natural is it to *assume* the BD vacuum? [Polyakov...vs. Susskind ...]

 \rightarrow If we make a mode expansion, and trace a given mode back in time until it is so blue-shifted that its wavelength is much smaller than Hubble scale. Then it is so far inside the horizon that it does not "feel" gravity and we can 'forget' about dS space and pick the unique Minkowski vacuum: $a_k(\eta_0)|0_{\eta_0}\rangle$ with $\eta_0 \rightarrow -\infty$, then we get the BD vacuum. [U. Danielsson, 2004; 2005]

→ Should not blue-shift a mode beyond the cut-off scale of the theory ⇒ More natural to pick an instantaneous Minkowski vacuum for this mode at this cut-off ⇒ Below cut-off scale, new vacuum is Bogolubov transformation of BD, i.e Non-BD state ⇒ Quantum swampland!

 \rightarrow Even if there are no *classical* potential with a meta-stable dS \Rightarrow Can radiative (loop) corrections *stabilize* to point a way out of the swampland?

NO! [U. Danielsson]

 \rightarrow One-loop effective potential (first 2 terms cancel for softly-broken susy) [M. Cicoli, J. Conlon & F. Quevedo, 2007]

$$V^{Q} = \frac{1}{64\pi^{2}} \left[\underbrace{\Lambda^{4} STr(m^{0}) \ln\left(\frac{A^{2}}{\mu^{2}}\right)^{+} 2\Lambda^{2} STr(m^{2})}_{+} STr\left(m^{4} \ln\left(\frac{m^{2}}{\Lambda^{2}}\right)\right) \right]$$

 \rightarrow One gets that the dS-invariant third term alone *only* on choosing the Bunch-Davies vacuum! [J. Martin, 2012] But how natural is it to *assume* the BD vacuum? [Polyakov...vs. Susskind ...]

→ If we make a mode expansion, and trace a given mode back in time until it is so blue-shifted that its wavelength is much smaller than Hubble scale. Then it is so far inside the horizon that it does not "feel" gravity and we can 'forget' about dS space and pick the unique Minkowski vacuum: $a_k(\eta_0)|0_{\eta_0}\rangle$ with $\eta_0 \to -\infty$, then we get the BD vacuum. [U. Danielsson, 2004; 2005]

→ Should not blue-shift a mode beyond the cut-off scale of the theory ⇒ More natural to pick an instantaneous Minkowski vacuum for this mode at this cut-off ⇒ Below cut-off scale, new vacuum is Bogolubov transformation of BD, i.e Non-BD state ⇒ Quantum swampland!

 \rightarrow Even if there are no *classical* potential with a meta-stable dS \Rightarrow Can radiative (loop) corrections *stabilize* to point a way out of the swampland?

NO! [U. Danielsson]

 \rightarrow One-loop effective potential (first 2 terms cancel for softly-broken susy) [M. Cicoli, J. Conlon & F. Quevedo, 2007]

$$V^{Q} = \frac{1}{64\pi^{2}} \left[\underbrace{\Lambda^{4} STr(m^{0}) \ln\left(\frac{A^{2}}{\mu^{2}}\right)^{+} \underbrace{2\Lambda^{2} STr(m^{2})}_{+} STr\left(m^{4} \ln\left(\frac{m^{2}}{\Lambda^{2}}\right)\right) \right]$$

 \rightarrow One gets that the dS-invariant third term alone *only* on choosing the Bunch-Davies vacuum! [J. Martin, 2012] But how natural is it to *assume* the BD vacuum? [Polyakov...vs. Susskind ...]

→ If we make a mode expansion, and trace a given mode back in time until it is so blue-shifted that its wavelength is much smaller than Hubble scale. Then it is so far inside the horizon that it does not "feel" gravity and we can 'forget' about dS space and pick the unique Minkowski vacuum: $a_k(\eta_0)|0_{\eta_0}\rangle$ with $\eta_0 \to -\infty$, then we get the BD vacuum. [U. Danielsson, 2004; 2005]

→ Should not blue-shift a mode beyond the cut-off scale of the theory ⇒ More natural to pick an instantaneous Minkowski vacuum for this mode at this cut-off ⇒ Below cut-off scale, new vacuum is Bogolubov transformation of BD, i.e Non-BD state ⇒ Quantum swampland!

Bunch-Davies (à la Hartle and Hawking) doomed?

4 **A** N A **A** N A **A** N

 \rightarrow Famous idea of the no-boundary wave function of the universe due to Hartle & Hawking \rightarrow Wave function specified by the value of the 3–metric and spatial field configuration on a final spacelike surface Σ

$\Psi=\Psi[h_{ab},\chi]$

 \rightarrow NBWF: The quantum mechanical amplitude for a given three-geometry Σ is given by the Feynman path integral over all compact four-geometries bounded only by $\Sigma \Rightarrow$ Resolution of classical big-bang singularity.

 \rightarrow Quantum completion for inflation \Rightarrow NBWF explains the quantum origin of spacetime and provides initial condition for inflation.

 \rightarrow Important for us: NBWF predicts classical Lorentzian, inflating spacetime with the Bunch-Davies vacuum \Rightarrow A priori, not guaranteed.

 \rightarrow A complementary interpretation is that the universe nucleates out of "nothing", since the total Hamiltonian for the system vanishes on-shell.[A. Vilenkin, 1982]

K. A. T. K. A. T. K.

 \rightarrow Famous idea of the no-boundary wave function of the universe due to Hartle & Hawking \rightarrow Wave function specified by the value of the 3–metric and spatial field configuration on a final spacelike surface Σ

$\Psi = \Psi[h_{ab}, \chi]$

 \rightarrow NBWF: The quantum mechanical amplitude for a given three-geometry Σ is given by the Feynman path integral over all compact four-geometries bounded only by $\Sigma \Rightarrow$ Resolution of classical big-bang singularity.

 \rightarrow Quantum completion for inflation \Rightarrow NBWF explains the quantum origin of spacetime and provides initial condition for inflation.

 \rightarrow Important for us: NBWF predicts classical Lorentzian, inflating spacetime with the Bunch-Davies vacuum \Rightarrow A priori, not guaranteed.

 \rightarrow A complementary interpretation is that the universe nucleates out of "nothing", since the total Hamiltonian for the system vanishes on-shell.[A. Vilenkin, 1982]

 \rightarrow Famous idea of the no-boundary wave function of the universe due to Hartle & Hawking \rightarrow Wave function specified by the value of the 3–metric and spatial field configuration on a final spacelike surface Σ

$\Psi = \Psi[h_{ab}, \chi]$

 \rightarrow NBWF: The quantum mechanical amplitude for a given three-geometry Σ is given by the Feynman path integral over all compact four-geometries bounded only by $\Sigma \Rightarrow$ Resolution of classical big-bang singularity.

 \rightarrow Quantum completion for inflation \Rightarrow NBWF explains the quantum origin of spacetime and provides initial condition for inflation.

 \rightarrow Important for us: NBWF predicts classical Lorentzian, inflating spacetime with the Bunch-Davies vacuum \Rightarrow A priori, not guaranteed.

 \rightarrow A complementary interpretation is that the universe nucleates out of "nothing", since the total Hamiltonian for the system vanishes on-shell.[A. Vilenkin, 1982]

 \rightarrow Famous idea of the no-boundary wave function of the universe due to Hartle & Hawking \rightarrow Wave function specified by the value of the 3–metric and spatial field configuration on a final spacelike surface Σ

$\Psi = \Psi[h_{ab}, \chi]$

 $\label{eq:stability} \begin{array}{l} \rightarrow \mbox{ NBWF: The quantum mechanical amplitude for a given } \\ \mbox{ three-geometry } \Sigma \mbox{ is given by the Feynman path integral over all } \\ \mbox{ compact four-geometries bounded only by } \Sigma \Rightarrow \mbox{ Resolution of classical } \\ \mbox{ big-bang singularity.} \end{array}$

 \rightarrow Quantum completion for inflation \Rightarrow NBWF explains the quantum origin of spacetime and provides initial condition for inflation.

 \rightarrow Important for us: NBWF predicts classical Lorentzian, inflating spacetime with the Bunch-Davies vacuum \Rightarrow A priori, not guaranteed.

 \rightarrow A complementary interpretation is that the universe nucleates out of "nothing", since the total Hamiltonian for the system vanishes on-shell.[A. Vilenkin, 1982]

 \rightarrow Famous idea of the no-boundary wave function of the universe due to Hartle & Hawking \rightarrow Wave function specified by the value of the 3–metric and spatial field configuration on a final spacelike surface Σ

$\Psi = \Psi[h_{ab}, \chi]$

 $\label{eq:stability} \begin{array}{l} \rightarrow \mbox{ NBWF: The quantum mechanical amplitude for a given } \\ \mbox{ three-geometry } \Sigma \mbox{ is given by the Feynman path integral over all } \\ \mbox{ compact four-geometries bounded only by } \Sigma \Rightarrow \mbox{ Resolution of classical } \\ \mbox{ big-bang singularity.} \end{array}$

 \rightarrow Quantum completion for inflation \Rightarrow NBWF explains the quantum origin of spacetime and provides initial condition for inflation.

 \rightarrow Important for us: NBWF predicts classical Lorentzian, inflating spacetime with the Bunch-Davies vacuum \Rightarrow A priori, not guaranteed.

 \rightarrow A complementary interpretation is that the universe nucleates out of "nothing", since the total Hamiltonian for the system vanishes on-shell.[A. Vilenkin, 1982]

 \rightarrow Restrict to minisuperspace, spatially closed cosmologies with a cosmological constant or a single scalar field.

 \rightarrow Saddle-point approximation [1. Hardle & S. Hawking, 1983]

$$\Psi[h_{ab},\chi] := \int^{(h,\chi)} \mathcal{D}[g] \mathcal{D}[\varphi] e^{-S[g,\varphi]/\hbar} \approx \sum_{\text{ext}} c_{\text{ext}} e^{-S_{\text{ext}}[h_{ab},\chi]/\hbar}$$

 \rightarrow No-boundary saddle-points: Extrema of the action (generally complex but Euclidean for the simplest cases), with (h_{ab}, χ) on the boundary at late times and are regular everywhere else.

 \rightarrow For minisuperspace models, this implies the boundary conditions a(0) = 0, $\dot{\phi}(0) = 0$. (Regularity at the South Pole).

 \rightarrow Dynamics governed by Einstein gravity \Rightarrow There is a one-parameter family of solutions of no-boundary instantons, specified for the value of the scalar field at the 'South Pole'.

b) a = b, a = b

 \rightarrow Restrict to minisuperspace, spatially closed cosmologies with a cosmological constant or a single scalar field.

 \rightarrow Saddle-point approximation [J. Hartle & S. Hawking, 1983]

$$\Psi[h_{ab},\chi] := \int^{(h,\chi)} \mathcal{D}[g] \mathcal{D}[\varphi] e^{-S[g,\varphi]/\hbar} \approx \sum_{\text{ext}} c_{\text{ext}} e^{-S_{\text{ext}}[h_{ab},\chi]/\hbar}$$

 \rightarrow No-boundary saddle-points: Extrema of the action (generally complex but Euclidean for the simplest cases), with (h_{ab}, χ) on the boundary at late times and are regular everywhere else.

 \rightarrow For minisuperspace models, this implies the boundary conditions a(0) = 0, $\dot{\phi}(0) = 0$. (Regularity at the South Pole).

 \rightarrow Dynamics governed by Einstein gravity \Rightarrow There is a one-parameter family of solutions of no-boundary instantons, specified for the value of the scalar field at the 'South Pole'.

K. A. T. K. A. T. K.

 \rightarrow Restrict to minisuperspace, spatially closed cosmologies with a cosmological constant or a single scalar field.

 \rightarrow Saddle-point approximation [J. Hartle & S. Hawking, 1983]

$$\Psi[h_{ab},\chi] := \int^{(h,\chi)} \mathcal{D}[g] \mathcal{D}[\varphi] e^{-S[g,\varphi]/\hbar} \approx \sum_{\text{ext}} c_{\text{ext}} e^{-S_{\text{ext}}[h_{ab},\chi]/\hbar}$$

 \rightarrow No-boundary saddle-points: Extrema of the action (generally complex but Euclidean for the simplest cases), with (h_{ab}, χ) on the boundary at late times and are regular everywhere else.

→ For minisuperspace models, this implies the boundary conditions a(0) = 0, $\dot{\phi}(0) = 0$. (Regularity at the South Pole).

 \rightarrow Dynamics governed by Einstein gravity \Rightarrow There is a one-parameter family of solutions of no-boundary instantons, specified for the value of the scalar field at the 'South Pole'.

b) a = b) a = b

 \rightarrow Restrict to minisuperspace, spatially closed cosmologies with a cosmological constant or a single scalar field.

 \rightarrow Saddle-point approximation [J. Hartle & S. Hawking, 1983]

$$\Psi[h_{ab},\chi] := \int^{(h,\chi)} \mathcal{D}[g] \mathcal{D}[\varphi] e^{-S[g,\varphi]/\hbar} \approx \sum_{\text{ext}} c_{\text{ext}} e^{-S_{\text{ext}}[h_{ab},\chi]/\hbar}$$

 \rightarrow No-boundary saddle-points: Extrema of the action (generally complex but Euclidean for the simplest cases), with (h_{ab}, χ) on the boundary at late times and are regular everywhere else.

→ For minisuperspace models, this implies the boundary conditions a(0) = 0, $\dot{\phi}(0) = 0$. (Regularity at the South Pole).

 \rightarrow Dynamics governed by Einstein gravity \Rightarrow There is a one-parameter family of solutions of no-boundary instantons, specified for the value of the scalar field at the 'South Pole'.

K. A. T. K. A. T. K.

Left: A typical time contour over the complex time, where $X = \pi/2H_0$. Right: Euclidean and Lorentzian manifold along the given time contour.

48 4 4 5 4 5

→ Euclidean $\int^{h} \mathcal{D}[g] e^{-S_{E}/\hbar}$ (compact Euclidean 4-geometries bounded by h) vs. Lorentzian $\int_{0}^{h} \mathcal{D}[g] e^{iS/\hbar}$ (Lorentzian 4-geometries interpolating between a vanishing initial 3-geometries and h).

 \rightarrow Cosmological Euclidean path integral plagued by divergences \Rightarrow Conformal mode problem renders unbounded from below

→ Ambiguity in the choosing the contour of integration [J. Halliwell] ⇒ The PI for real Lorentzian metrics cannot be deformed to a Euclidean contour, which corresponds to the HH saddle-point.[J. Feldbrugge, J. Lehners & N. Turok, 2017]

 \rightarrow Work with the Lorentzian path integral (with real lapse) and use Picard-Lefshetz theory to improve the convergence property of oscillatory integrals \Rightarrow Cauchy's theorem allows us deform a complex integration contour while PL tells us how to deform it.

→ The path integral amplitude for a tensor perturbation ϕ_1 on the final 3-geometry is doomed due to an inverse-Gaussian weighting $\int \mathcal{D}[g] e^{iS[g]/\hbar} \propto \exp(\frac{-12\pi^2}{\hbar\lambda} + \frac{3l(l+1)(l+2)\phi_1^2}{2\hbar\lambda})$

4 10 10 14

→ Euclidean $\int^{h} \mathcal{D}[g] e^{-S_{E}/\hbar}$ (compact Euclidean 4-geometries bounded by h) vs. Lorentzian $\int_{0}^{h} \mathcal{D}[g] e^{iS/\hbar}$ (Lorentzian 4-geometries interpolating between a vanishing initial 3-geometries and h).

 \rightarrow Cosmological Euclidean path integral plagued by divergences \Rightarrow Conformal mode problem renders unbounded from below

→ Ambiguity in the choosing the contour of integration [J. Hallwell] ⇒The PI for real Lorentzian metrics cannot be deformed to a Euclidean contour, which corresponds to the HH saddle-point.[J. Feldbrugge, J. Lehners & N. Turok, 2017]

 \rightarrow Work with the Lorentzian path integral (with real lapse) and use Picard-Lefshetz theory to improve the convergence property of oscillatory integrals \Rightarrow Cauchy's theorem allows us deform a complex integration contour while PL tells us how to deform it.

→ The path integral amplitude for a tensor perturbation ϕ_1 on the final 3-geometry is doomed due to an inverse-Gaussian weighting $\int \mathcal{D}[g] e^{iS[g]/\hbar} \propto \exp(\frac{-12\pi^2}{\hbar\lambda} + \frac{3l(l+1)(l+2)\phi_1^2}{2\hbar\lambda})$

4.5.5.4.5

→ Euclidean $\int^{h} \mathcal{D}[g] e^{-S_{E}/\hbar}$ (compact Euclidean 4-geometries bounded by h) vs. Lorentzian $\int_{0}^{h} \mathcal{D}[g] e^{iS/\hbar}$ (Lorentzian 4-geometries interpolating between a vanishing initial 3-geometries and h).

 \rightarrow Cosmological Euclidean path integral plagued by divergences \Rightarrow Conformal mode problem renders unbounded from below

→ Ambiguity in the choosing the contour of integration [J. Halliwell] ⇒ The PI for real Lorentzian metrics cannot be deformed to a Euclidean contour, which corresponds to the HH saddle-point.[J.

Feldbrugge, J. Lehners & N. Turok, 2017]

 \rightarrow Work with the Lorentzian path integral (with real lapse) and use Picard-Lefshetz theory to improve the convergence property of oscillatory integrals \Rightarrow Cauchy's theorem allows us deform a complex integration contour while PL tells us how to deform it.

→ The path integral amplitude for a tensor perturbation ϕ_1 on the final 3-geometry is doomed due to an inverse-Gaussian weighting $\int \mathcal{D}[g] e^{iS[g]/\hbar} \propto \exp(\frac{-12\pi^2}{\hbar\Lambda} + \frac{3!(l+1)(l+2)\phi_1^2}{2\hbar\Lambda})$

4.5.5.4.5

→ Euclidean $\int^{h} \mathcal{D}[g] e^{-S_{E}/\hbar}$ (compact Euclidean 4-geometries bounded by h) vs. Lorentzian $\int_{0}^{h} \mathcal{D}[g] e^{iS/\hbar}$ (Lorentzian 4-geometries interpolating between a vanishing initial 3-geometries and h).

 \rightarrow Cosmological Euclidean path integral plagued by divergences \Rightarrow Conformal mode problem renders unbounded from below

→ Ambiguity in the choosing the contour of integration [J. Halliwell] ⇒ The PI for real Lorentzian metrics cannot be deformed to a Euclidean contour, which corresponds to the HH saddle-point.[J.

Feldbrugge, J. Lehners & N. Turok, 2017]

 \rightarrow Work with the Lorentzian path integral (with real lapse) and use Picard-Lefshetz theory to improve the convergence property of oscillatory integrals \Rightarrow Cauchy's theorem allows us deform a complex integration contour while PL tells us how to deform it.

→ The path integral amplitude for a tensor perturbation ϕ_1 on the final 3-geometry is doomed due to an inverse-Gaussian weighting $\int \mathcal{D}[g] e^{iS[g]/\hbar} \propto \exp(\frac{-12\pi^2}{\hbar \Lambda} + \frac{3l(l+1)(l+2)\phi_1^2}{2\hbar \Lambda})$

4 3 5 4 3

→ Euclidean $\int^{h} \mathcal{D}[g] e^{-S_{E}/\hbar}$ (compact Euclidean 4-geometries bounded by h) vs. Lorentzian $\int_{0}^{h} \mathcal{D}[g] e^{iS/\hbar}$ (Lorentzian 4-geometries interpolating between a vanishing initial 3-geometries and h).

 \rightarrow Cosmological Euclidean path integral plagued by divergences \Rightarrow Conformal mode problem renders unbounded from below

→ Ambiguity in the choosing the contour of integration [J. Halliwell] ⇒ The PI for real Lorentzian metrics cannot be deformed to a Euclidean contour, which corresponds to the HH saddle-point.[J.

Feldbrugge, J. Lehners & N. Turok, 2017]

 \rightarrow Work with the Lorentzian path integral (with real lapse) and use Picard-Lefshetz theory to improve the convergence property of oscillatory integrals \Rightarrow Cauchy's theorem allows us deform a complex integration contour while PL tells us how to deform it.

→ The path integral amplitude for a tensor perturbation ϕ_1 on the final 3–geometry is doomed due to an inverse-Gaussian weighting $\int \mathcal{D}[g] e^{iS[g]/\hbar} \propto \exp\left(\frac{-12\pi^2}{\hbar\Lambda} + \frac{3l(l+1)(l+2)\phi_1^2}{2\hbar\Lambda}\right)$

4 3 5 4 3 5 5

ъ

イロト イポト イヨト イヨト

Hartle-Hawking rescued by (loop) quantum gravity

4 **A** N A **A** N A **A** N

Loop quantum gravity corrections

 \rightarrow Basic continuum quantities of spatial geometry, such as areas and volumes, are represented by operators with discrete spectra. An infinitesimal change of these quantities in time — or, more geometrically, the extrinsic curvature of space — no longer has a linear and local expression in space but is instead exponentiated and extended one-dimensionally, along an eponymous loop.[A. Ashtekar, M. Bojowald, J.

Lewandowski, C. Rovelli, L. Smolin, T. Thiemann ...]

 \rightarrow For a cosmological model, they imply two main corrections:

• Holonomy modifications: No operator for extrinsic curvature \dot{a} or the Hubble parameter $\dot{a}/a \Rightarrow$ Well-defined operators only for SU(2) holonomy matrix elements, which are periodic functions such as $\dot{a} \rightarrow \sin(\ell(a)\dot{a})/\ell(a)$ with $\ell(a) \sim l_P/a$.

• Inverse-volume corrections: Using $\hat{h}^{-1}[\hat{h}, \sqrt{\hat{a}}] = -\frac{1}{2}\hbar \ell a^{-1/2}$ (where $\hat{h} = \exp(i\ell p_a)$) to get $a^{-1} = f(a)/a$ with f(a) some quantum correction function which goes to 1 for large a. The small-*a* behaviour eliminates the divergence of a direct inverse at a = 0.

Loop quantum gravity corrections

→ Basic continuum quantities of spatial geometry, such as areas and volumes, are represented by operators with discrete spectra. An infinitesimal change of these quantities in time — or, more geometrically, the extrinsic curvature of space — no longer has a linear and local expression in space but is instead exponentiated and extended one-dimensionally, along an eponymous loop.[A. Ashtekar, M. Bojowald, J. Lewandowski, C. Rovelli, L. Smolin, T. Thiemann ...]

- \rightarrow For a cosmological model, they imply two main corrections:
 - Holonomy modifications: No operator for extrinsic curvature \dot{a} or the Hubble parameter $\dot{a}/a \Rightarrow$ Well-defined operators only for SU(2) holonomy matrix elements, which are periodic functions such as $\dot{a} \rightarrow \sin(\ell(a)\dot{a})/\ell(a)$ with $\ell(a) \sim l_P/a$.
 - Inverse-volume corrections: Using $\hat{h}^{-1}[\hat{h},\sqrt{\hat{a}}] = -\frac{1}{2}\hbar\ell \widehat{a^{-1/2}}$ (where

 $\hat{h} = \exp(i\hat{l}p_a))$ to get $a^{-1} = f(a)/a$ with f(a) some quantum correction function which goes to 1 for large a. The small-*a* behaviour eliminates the divergence of a direct inverse at a = 0.

Loop quantum gravity corrections

→ Basic continuum quantities of spatial geometry, such as areas and volumes, are represented by operators with discrete spectra. An infinitesimal change of these quantities in time — or, more geometrically, the extrinsic curvature of space — no longer has a linear and local expression in space but is instead exponentiated and extended one-dimensionally, along an eponymous loop.[A. Ashtekar, M. Bojowald, J. Lewandowski, C. Rovelli, L. Smolin, T. Thiemann ...]

- \rightarrow For a cosmological model, they imply two main corrections:
 - Holonomy modifications: No operator for extrinsic curvature \dot{a} or the Hubble parameter $\dot{a}/a \Rightarrow$ Well-defined operators only for SU(2) holonomy matrix elements, which are periodic functions such as $\dot{a} \rightarrow \sin(\ell(a)\dot{a})/\ell(a)$ with $\ell(a) \sim l_P/a$.
 - Inverse-volume corrections: Using $\hat{h}^{-1}[\hat{h}, \sqrt{\hat{a}}] = -\frac{1}{2}\hbar \hat{\ell a^{-1/2}}$ (where $\hat{h} = \widehat{\exp(i\ell p_a)}$) to get $a^{-1} = f(a)/a$ with f(a) some quantum correction function which goes to 1 for large a. The small-*a* behaviour eliminates the divergence of a direct inverse at a = 0.

 \rightarrow In the path integral form for the no-boundary proposal, this implies replacing the Einstein-Hilbert action by an effective LQC action, which includes the said corrections.

⇒ In the canonical picture, instead of solving the standard WDW operator, one solves a "difference" equation in LQC ⇒ Quantum geometry corrections imply a modified Hamiltonian constraint in $\hat{\mathcal{H}}_{LQC} \Psi = 0$. Still need boundary conditions for specific solutions. Naturally, the Friedmann equation is also modified in LQC as a result.

→ The role played by modified constraints crucial in LQG ⇒ They result in **deformed gauge transformations**. Since background is modified, covariant perturbatons imply an effective line-element $ds_{\beta}^2 = -\beta N^2 dt^2 + a(t)^2 d\Omega_k$ where $\beta(a, \dot{a})$ changes sign at large curvature resulting in **dynamical** signature change.

South-Pole regularity conditions modified for LQC – EH: a(0) = 0, $\dot{a}(0) = 1 \Leftrightarrow$ LQC: a(0) = 0, $\dot{a}(0) = 0$

4 **A** N A **B** N A **B** N

 \rightarrow In the path integral form for the no-boundary proposal, this implies replacing the Einstein-Hilbert action by an effective LQC action, which includes the said corrections.

→ In the canonical picture, instead of solving the standard WDW operator, one solves a "difference" equation in LQC ⇒ Quantum geometry corrections imply a modified Hamiltonian constraint in $\hat{\mathcal{H}}_{LQC} \Psi = 0$. Still need boundary conditions for specific solutions. Naturally, the Friedmann equation is also modified in LQC as a result.

→ The role played by modified constraints crucial in LQG ⇒ They result in **deformed gauge transformations**. Since background is modified, covariant perturbatons imply an effective line-element $ds_{\beta}^2 = -\beta N^2 dt^2 + a(t)^2 d\Omega_k$ where $\beta(a, \dot{a})$ changes sign at large curvature resulting in **dynamical** signature change.

> South-Pole regularity conditions modified for LQC – EH: a(0) = 0, $\dot{a}(0) = 1 \Leftrightarrow$ LQC: a(0) = 0, $\dot{a}(0) = 0$

.

 \rightarrow In the path integral form for the no-boundary proposal, this implies replacing the Einstein-Hilbert action by an effective LQC action, which includes the said corrections.

→ In the canonical picture, instead of solving the standard WDW operator, one solves a "difference" equation in LQC ⇒ Quantum geometry corrections imply a modified Hamiltonian constraint in $\hat{\mathcal{H}}_{LQC} \Psi = 0$. Still need boundary conditions for specific solutions. Naturally, the Friedmann equation is also modified in LQC as a result.

→ The role played by modified constraints crucial in LQG ⇒ They result in deformed gauge transformations. Since background is modified, covariant perturbatons imply an effective line-element $ds_{\beta}^2 = -\beta N^2 dt^2 + a(t)^2 d\Omega_k$ where $\beta(a, \dot{a})$ changes sign at large curvature resulting in dynamical signature change.

> South-Pole regularity conditions modified for LQC – EH: a(0) = 0, $\dot{a}(0) = 1 \Leftrightarrow$ LQC: a(0) = 0, $\dot{a}(0) = 0$

 \rightarrow In the path integral form for the no-boundary proposal, this implies replacing the Einstein-Hilbert action by an effective LQC action, which includes the said corrections.

→ In the canonical picture, instead of solving the standard WDW operator, one solves a "difference" equation in LQC ⇒ Quantum geometry corrections imply a modified Hamiltonian constraint in $\hat{\mathcal{H}}_{LQC} \Psi = 0$. Still need boundary conditions for specific solutions. Naturally, the Friedmann equation is also modified in LQC as a result.

→ The role played by modified constraints crucial in LQG ⇒ They result in deformed gauge transformations. Since background is modified, covariant perturbatons imply an effective line-element $ds_{\beta}^2 = -\beta N^2 dt^2 + a(t)^2 d\Omega_k$ where $\beta(a, \dot{a})$ changes sign at large curvature resulting in dynamical signature change.

> South-Pole regularity conditions modified for LQC – EH: a(0) = 0, $\dot{a}(0) = 1 \Leftrightarrow LQC$: a(0) = 0, $\dot{a}(0) = 0$

周レイモレイモル

Hartle-Hawking proposal: Recap

 \rightarrow For minisuperspace cosmologies, in the saddle-point approximation, the no-boundary wavefunction simplifies

$$\Psi^{\mathrm{HH}}[\tilde{a},\chi] pprox e^{-S_{\mathrm{E}}^{\mathrm{EH}}[\tilde{a},\chi]/\hbar}$$

 \rightarrow For simplest models, say with only a cosmological constant, our (Lorentzian) universe tunnels from nothing via an Euclidean region.

The nucleation probability of a universe $\mathcal{P} \simeq e^{-2S_{\rm E}^{\rm LQC}}$.

Pure de Sitter

[S.B. & D.-h. Yeom, 2018]

$$-\dot{a}^2 = \mathcal{V} := \frac{8\pi a^2}{3} f^2(a) \left[\frac{\rho}{f(a)} - \rho_1\right] \left[\frac{\rho_2 - \frac{\rho}{f(a)}}{\rho_c}\right]$$

 \rightarrow A typical solution $a(\tau)$ for some numerical values of $\wedge \& I_{PI}$.

 $ightarrow -2S_{
m E}^{
m LQC} \simeq rac{\mathcal{A}}{4} + c + d\log\mathcal{A}, \quad d>0 \ {
m where} \ \mathcal{A} = 4\pi \tilde{a}^2$

→ LQC correction rather small \Rightarrow There is a potential barrier for both EH $(-\dot{a}^2 \sim -1 + \Lambda a^2)$ and LQC scenarios.

Pure de Sitter

[S.B. & D.-h. Yeom, 2018]

$$-\dot{a}^2 = \mathcal{V} := \frac{8\pi a^2}{3} f^2(a) \left[\frac{\rho}{f(a)} - \rho_1\right] \left[\frac{\rho_2 - \frac{\rho}{f(a)}}{\rho_c}\right]$$

 \rightarrow A typical solution $a(\tau)$ for some numerical values of $\wedge \& I_{PI}$.

 $ightarrow -2S_{
m E}^{
m LQC} \simeq rac{\mathcal{A}}{4} + c + d\log\mathcal{A}, \quad d > 0 \ {
m where} \ \mathcal{A} = 4\pi \tilde{a}^2$

→ LQC correction rather small ⇒ There is a potential barrier for both EH $(-\dot{a}^2 \sim -1 + \Lambda a^2)$ and LQC scenarios.

Massless scalar field

 \rightarrow Usual KG equation $\ddot{\varphi} + 3H\dot{\varphi} = 0 \Rightarrow \dot{\varphi} = 0$ and non-dynamical solution. In EH theory, no way to get interesting solutions.

 \rightarrow Modified equations of motion [S.B. & D.-h. Yeom, 2018]

$$\mathcal{V} = \frac{8\pi G}{3} a^2 f^2(a) \left[\frac{a^6 \pi}{4\sqrt{3}\gamma^3 l_{Pl}^6} \left(\frac{\rho}{\rho_c} \right) \left(\frac{g(a)}{f(a)} \right) - \rho_1 \right] \left[\frac{1}{\rho_c} \left(\rho_2 - \frac{a^6 \pi}{4\sqrt{3}\gamma^3 l_{Pl}^6} \left(\frac{\rho}{\rho_c} \right) \left(\frac{g(a)}{f(a)} \right) \right) \right]$$

 $\ddot{\varphi} - \left(rac{B(a)}{B(a)}
ight)\dot{\varphi} = 0$ Classically, $B(a) \sim a^{-3}$ & $B(a) \sim a^{12}$ in QG regime

 \rightarrow New instantonic solutions for NBWF \Leftrightarrow New physical interpretations for LQC

(a)

Massless scalar field

 \rightarrow Usual KG equation $\ddot{\varphi} + 3H\dot{\varphi} = 0 \Rightarrow \dot{\varphi} = 0$ and non-dynamical solution. In EH theory, no way to get interesting solutions.

 \rightarrow Modified equations of motion [S.B. & D.-h. Yeom, 2018]

$$\begin{split} \mathcal{V} &= \frac{8\pi G}{3} a^2 f^2(a) \left[\frac{a^6 \pi}{4\sqrt{3}\gamma^3 l_{Pl}^6} \left(\frac{\rho}{\rho_c} \right) \left(\frac{g(a)}{f(a)} \right) - \rho_1 \right] \left[\frac{1}{\rho_c} \left(\rho_2 - \frac{a^6 \pi}{4\sqrt{3}\gamma^3 l_{Pl}^6} \left(\frac{\rho}{\rho_c} \right) \left(\frac{g(a)}{f(a)} \right) \right) \right] \\ \ddot{\varphi} &- \left(\frac{\dot{B}(a)}{B(a)} \right) \dot{\varphi} = 0 \quad \text{Classically, } B(a) \sim a^{-3} \& \quad B(a) \sim a^{12} \quad \text{in QG regime} \end{split}$$

 \rightarrow New instantonic solutions for NBWF \Leftrightarrow New physical interpretations for LQC

→ Euclidean path integral diverges for $\Lambda > 0$ for all contours of the lapse ⇒ Lorentzian path integral can be made well-defined by applying Piecard-Lefshetz theory to yield a convergent integral by deforming the lapse contour.

→ Unsuppressed runaway perturbations on the final 3-geometry due to an inverse Gaussian weighting for perturbations ⇒ Old problem of the scale factor having wrong-sign kinetic term. $S = \int dt N \left(-3a\frac{\dot{a}^2}{N^2} + a^3\frac{\dot{a}^2}{2N^2} + ...\right)$ [J. Feldbrugge, J.-I. Lehners & N. Turok, 2017]

 \rightarrow Dynamical signature change in makes these inverted Gaussians have the correct sign for having a Bunch-Davies state at the onset of inflation. [M. Bojowald & S.B., 2018]

→ Signature change more general than LQG and appears in other approaches. [J. Ambjorn, D. Coumbe, J. Gizbert-Studnicki & J. Jurkiewicz, 2011; A. Stern & C. Xu, 2018]

4 **A** N A **B** N A **B** N

→ Euclidean path integral diverges for $\Lambda > 0$ for all contours of the lapse ⇒ Lorentzian path integral can be made well-defined by applying Piecard-Lefshetz theory to yield a convergent integral by deforming the lapse contour.

→ Unsuppressed runaway perturbations on the final 3-geometry due to an inverse Gaussian weighting for perturbations ⇒ Old problem of the scale factor having wrong-sign kinetic term. $S = \int dt N \left(-3a\frac{\dot{a}^2}{N^2} + a^3\frac{\dot{\phi}^2}{2N^2} + ...\right)$ [J. Feldbrugge, J.-l. Lehners & N. Turok, 2017]

 \rightarrow Dynamical signature change in makes these inverted Gaussians have the correct sign for having a Bunch-Davies state at the onset of inflation. [M. Bojowald & S.B., 2018]

→ Signature change more general than LQG and appears in other approaches. [J. Ambjorn, D. Coumbe, J. Gizbert-Studnicki & J. Jurkiewicz, 2011; A. Stern & C. Xu, 2018]

→ Euclidean path integral diverges for $\Lambda > 0$ for all contours of the lapse ⇒ Lorentzian path integral can be made well-defined by applying Piecard-Lefshetz theory to yield a convergent integral by deforming the lapse contour.

→ Unsuppressed runaway perturbations on the final 3-geometry due to an inverse Gaussian weighting for perturbations ⇒ Old problem of the scale factor having wrong-sign kinetic term. $S = \int dt N \left(-3a\frac{\dot{a}^2}{N^2} + a^3\frac{\dot{\phi}^2}{2N^2} + ...\right)$ [J. Feldbrugge, J.-l. Lehners & N. Turok, 2017]

 \rightarrow Dynamical signature change in makes these inverted Gaussians have the correct sign for having a Bunch-Davies state at the onset of inflation. [M. Bojowald & S.B., 2018]

→ Signature change more general than LQG and appears in other approaches. [J. Ambjorn, D. Coumbe, J. Gizbert-Studnicki & J. Jurkiewicz, 2011; A. Stern & C. Xu, 2018]

488 48 48 48 4

→ Euclidean path integral diverges for $\Lambda > 0$ for all contours of the lapse ⇒ Lorentzian path integral can be made well-defined by applying Piecard-Lefshetz theory to yield a convergent integral by deforming the lapse contour.

→ Unsuppressed runaway perturbations on the final 3-geometry due to an inverse Gaussian weighting for perturbations ⇒ Old problem of the scale factor having wrong-sign kinetic term. $S = \int dt N \left(-3a\frac{\dot{a}^2}{N^2} + a^3\frac{\dot{\phi}^2}{2N^2} + ...\right)$ [J. Feldbrugge, J.-l. Lehners & N. Turok, 2017]

 \rightarrow Dynamical signature change in makes these inverted Gaussians have the correct sign for having a Bunch-Davies state at the onset of inflation. [M. Bojowald & S.B., 2018]

 \rightarrow Signature change more general than LQG and appears in other approaches. [J. Ambjorn, D. Coumbe, J. Gizbert-Studnicki & J. Jurkiewicz, 2011; A. Stern & C. Xu, 2018]

4 7 1

Timeless stability of perturbations

 $\begin{array}{l} \rightarrow \mbox{ The mode equation} \\ \ddot{v} \approx \frac{1}{4} \left((n-2\epsilon)(n+2) + \epsilon(\epsilon+2) - \beta \frac{N^2 \ell(\ell+2)}{c^2} \right) \frac{v}{t^2}, \\ \mbox{ and its solution is } v_+ = v_1 t^{\frac{1}{2}(1+\gamma)} \mbox{ where} \end{array}$

$$\gamma = \sqrt{1 + n(n+2) - \beta \frac{\ell(\ell+2)N^2}{c^2}}$$

 \rightarrow For EH, $\beta = 1$, $n = 0 = \epsilon$, γ and the solutions v_{\pm} have branch cuts on the real *N*-axis \Rightarrow The action evaluated on the regular solution v_{\pm} is equal to $S_{\pm}(v_1) = \frac{1}{4}N^{-1}(\gamma - 1)v_1^2$ and has a negative imaginary part above the branch cut. This result leads to a Gaussian with positive exponent in the path integral of perturbations.

 \rightarrow With dynamical signature change, that is $\beta < 0$, γ is always real for real *N*. Its branch cuts in the complex plane are now on the imaginary *N*-axis where they do not affect the Lorentzian path integral \Rightarrow The action *S*₊ is always real and finite and does not lead to unbounded contributions to the path integral.

• # • • = • • = •

Timeless stability of perturbations

 $\begin{array}{l} \rightarrow \mbox{ The mode equation} \\ \ddot{v} \approx \frac{1}{4} \left((n-2\epsilon)(n+2) + \epsilon(\epsilon+2) - \beta \frac{N^2 \ell(\ell+2)}{c^2} \right) \frac{v}{t^2}, \\ \mbox{ and its solution is } v_+ = v_1 t^{\frac{1}{2}(1+\gamma)} \mbox{ where} \end{array}$

$$\gamma = \sqrt{1 + n(n+2) - \beta \frac{\ell(\ell+2)N^2}{c^2}}$$

→ For EH, $\beta = 1$, $n = 0 = \epsilon$, γ and the solutions v_{\pm} have branch cuts on the real *N*-axis ⇒ The action evaluated on the regular solution v_{+} is equal to $S_{+}(v_{1}) = \frac{1}{4}N^{-1}(\gamma - 1)v_{1}^{2}$ and has a negative imaginary part above the branch cut. This result leads to a Gaussian with positive exponent in the path integral of perturbations.

 \rightarrow With dynamical signature change, that is $\beta < 0$, γ is always real for real N. Its branch cuts in the complex plane are now on the imaginary N-axis where they do not affect the Lorentzian path integral \Rightarrow The action S_+ is always real and finite and does not lead to unbounded contributions to the path integral.

• # • • = • • = •

Timeless stability of perturbations

 $\begin{array}{l} \rightarrow \mbox{ The mode equation} \\ \ddot{v} \approx \frac{1}{4} \left((n-2\epsilon)(n+2) + \epsilon(\epsilon+2) - \beta \frac{N^2 \ell(\ell+2)}{c^2} \right) \frac{v}{t^2}, \\ \mbox{ and its solution is } v_+ = v_1 t^{\frac{1}{2}(1+\gamma)} \mbox{ where} \end{array}$

$$\gamma = \sqrt{1 + n(n+2) - \beta \frac{\ell(\ell+2)N^2}{c^2}}$$

→ For EH, $\beta = 1$, $n = 0 = \epsilon$, γ and the solutions v_{\pm} have branch cuts on the real *N*-axis ⇒ The action evaluated on the regular solution v_{+} is equal to $S_{+}(v_{1}) = \frac{1}{4}N^{-1}(\gamma - 1)v_{1}^{2}$ and has a negative imaginary part above the branch cut. This result leads to a Gaussian with positive exponent in the path integral of perturbations.

 \rightarrow With dynamical signature change, that is $\beta < 0$, γ is always real for real *N*. Its branch cuts in the complex plane are now on the imaginary *N*-axis where they do not affect the Lorentzian path integral \Rightarrow The action S_+ is always real and finite and does not lead to unbounded contributions to the path integral.

・ロト ・四ト ・ヨト

3

\rightarrow Conclusions:

- Swampland has opened a window of possibilities for cosmologists to model reality in a consistent manner.
- Conceptual reasons to move away from the Bunch-Davies vacuum for dS ⇒ Ironically, this strengthens the argument for a (quantum) Swampland.
- The no-boundary proposal also seems to suffer from some obstructions to constructing a BD vacuum for inflation.
- Quantum-geometry effects can give us hope as far as BD is concerned
 ⇒ Confluence of different approaches to quantum gravity might be fruitful.
- \rightarrow Looking ahead:
 - Looking beyond the simplest models of quintessence, what does the swampland have to say for more sophisticated models (higher derivative terms, coupled-quintessence, ...)?
 - Quantum-geometry corrected Hartle-Hawking proposal gives a new path towards dS/CFT? ($Z_{EAdS_4} = |\Psi_{dS_4}|_{HH}$) [Anninos, Strominger, Hartle, Hertog, Hawking ...]

\rightarrow Conclusions:

- Swampland has opened a window of possibilities for cosmologists to model reality in a consistent manner.
- Conceptual reasons to move away from the Bunch-Davies vacuum for dS ⇒ Ironically, this strengthens the argument for a (quantum) Swampland.
- The no-boundary proposal also seems to suffer from some obstructions to constructing a BD vacuum for inflation.
- Quantum-geometry effects can give us hope as far as BD is concerned
 ⇒ Confluence of different approaches to quantum gravity might be fruitful.
- \rightarrow Looking ahead:
 - Looking beyond the simplest models of quintessence, what does the swampland have to say for more sophisticated models (higher derivative terms, coupled-quintessence, ...)?
 - Quantum-geometry corrected Hartle-Hawking proposal gives a new path towards dS/CFT? ($Z_{EAdS_4} = |\Psi_{dS_4}|_{HH}$) [Anninos, Strominger, Hartle, Hertog, Hawking ...]

1 E K 1 E K

- \rightarrow Conclusions:
 - Swampland has opened a window of possibilities for cosmologists to model reality in a consistent manner.
 - Conceptual reasons to move away from the Bunch-Davies vacuum for dS ⇒ Ironically, this strengthens the argument for a (quantum) Swampland.
 - The no-boundary proposal also seems to suffer from some obstructions to constructing a BD vacuum for inflation.
 - Quantum-geometry effects can give us hope as far as BD is concerned ⇒ Confluence of different approaches to quantum gravity might be fruitful.
- \rightarrow Looking ahead:
 - Looking beyond the simplest models of quintessence, what does the swampland have to say for more sophisticated models (higher derivative terms, coupled-quintessence, ...)?
 - Quantum-geometry corrected Hartle-Hawking proposal gives a new path towards dS/CFT? ($Z_{EAdS_4} = |\Psi_{dS_4}|_{HH}$) [Anninos, Strominger, Hartle, Hertog, Hawking ...]

 \rightarrow Conclusions:

- Swampland has opened a window of possibilities for cosmologists to model reality in a consistent manner.
- Conceptual reasons to move away from the Bunch-Davies vacuum for dS ⇒ Ironically, this strengthens the argument for a (quantum) Swampland.
- The no-boundary proposal also seems to suffer from some obstructions to constructing a BD vacuum for inflation.
- Quantum-geometry effects can give us hope as far as BD is concerned
 ⇒ Confluence of different approaches to quantum gravity might be fruitful.

\rightarrow Looking ahead:

- Looking beyond the simplest models of quintessence, what does the swampland have to say for more sophisticated models (higher derivative terms, coupled-quintessence, ...)?
- Quantum-geometry corrected Hartle-Hawking proposal gives a new path towards dS/CFT? ($Z_{EAdS_4} = |\Psi_{dS_4}|_{HH}$) [Anninos, Strominger, Hartle, Hertog, Hawking ...]

- \rightarrow Conclusions:
 - Swampland has opened a window of possibilities for cosmologists to model reality in a consistent manner.
 - Conceptual reasons to move away from the Bunch-Davies vacuum for dS ⇒ Ironically, this strengthens the argument for a (quantum) Swampland.
 - The no-boundary proposal also seems to suffer from some obstructions to constructing a BD vacuum for inflation.
 - Quantum-geometry effects can give us hope as far as BD is concerned
 ⇒ Confluence of different approaches to quantum gravity might be fruitful.
- \rightarrow Looking ahead:
 - Looking beyond the simplest models of quintessence, what does the swampland have to say for more sophisticated models (higher derivative terms, coupled-quintessence, ...)?
 - Quantum-geometry corrected Hartle-Hawking proposal gives a new path towards dS/CFT? ($Z_{EAdS_4} = |\Psi_{dS_4}|_{HH}$) [Anninos, Strominger, Hartle, Hertog, Hawking ...]

 \rightarrow Conclusions:

- Swampland has opened a window of possibilities for cosmologists to model reality in a consistent manner.
- Conceptual reasons to move away from the Bunch-Davies vacuum for dS ⇒ Ironically, this strengthens the argument for a (quantum) Swampland.
- The no-boundary proposal also seems to suffer from some obstructions to constructing a BD vacuum for inflation.
- Quantum-geometry effects can give us hope as far as BD is concerned
 ⇒ Confluence of different approaches to quantum gravity might be fruitful.
- \rightarrow Looking ahead:
 - Looking beyond the simplest models of quintessence, what does the swampland have to say for more sophisticated models (higher derivative terms, coupled-quintessence, ...)?
 - Quantum-geometry corrected Hartle-Hawking proposal gives a new path towards dS/CFT? ($Z_{EAdS_4} = |\Psi_{dS_4}|_{HH}$) [Anninos, Strominger, Hartle, Hertog, Hawking ...]

EXTRA SLIDES

Instantaneous Minkowski vacuum: $a_k(\eta_{k,0})|0,\eta_{k,0}\rangle = 0$ at $\eta_{k,0} = -\frac{\Lambda}{Hk}$

Even if it had been possible to find a vacuum already at the classical level, the quantum contributions are still expected to be much larger than our fine tuned value of the cosmological constant.

If dS is unstable, there is a spontaneous breakdown of dS invariance at the quantum level.

The particle production will through conservation of energy drain the cosmological constant and induce a time dependence.

The process can not end until the cosmological constant has reached zero \Rightarrow As the Hubble constant decreases in value, the quantum effects go away. In a time-dependent background, no reason to exclude terms with $p \neq -\rho$ based on lack of right symmetry.

The inconsistency of the Bunch-Davies vacuum supports a quantum version of the swampland conjecture.

4 **A** N A **B** N A **B** N

 \rightarrow The LQG corrections strongly modifies the dynamics through regularized (diffeomorphism and scalar) constraints.

Example: The effective Friedmann equation in LQC: $H^2 = \frac{8\pi G}{3}\rho \left(1 - \frac{\rho}{\rho_c}\right)$ due to the LQC Hamiltonian constraint: $\mathcal{H} = -\frac{3NV_0}{8\pi G} a \sin^2(\ell(a)\frac{\dot{a}}{N})/\ell^2(a)$

→ Gauge transformations, generated by constraints, represent coordinate freedom: space-time Lie derivative of a function given by $\{f, H[\epsilon] + D[\xi^a]\} = \mathcal{L}_{(\epsilon/N,\xi^a + \epsilon N^a/N)}f$ on-shell (time direction $t^a = Nn^a + N^a$)

 \rightarrow Hypersurface deformation algebra of classical space-time (generalization of local Poincaré algebra):

$$\begin{aligned} \left\{ D(w_1^a), D(w_2^b) \right\} &= D\left(\mathcal{L}_{w_1} w_2^a \right) \\ \left\{ H(N), D(w^a) \right\} &= -H\left(\mathcal{L}_w N \right) \\ \left\{ H(N_1), H(N_2) \right\} &= D\left(q^{ab} \left(N_1 \partial_b N_2 - N_2 \partial_b N_1 \right) \right) \end{aligned}$$

- Invariance under HDA implies general covariance. [Dirac, 1951]
- Second-order field equations invariant under HDA must equal GR. [Hojman, Kukař & Teitelboim, 1974-76]

< 回 > () >

 \rightarrow The LQG corrections strongly modifies the dynamics through regularized (diffeomorphism and scalar) constraints.

Example: The effective Friedmann equation in LQC: $H^2 = \frac{8\pi G}{3}\rho \left(1 - \frac{\rho}{\rho_c}\right)$ due to the LQC Hamiltonian constraint: $\mathcal{H} = -\frac{3NV_0}{8\pi G} a \sin^2(\ell(a)\frac{\dot{a}}{N})/\ell^2(a)$

→ Gauge transformations, generated by constraints, represent coordinate freedom: space-time Lie derivative of a function given by $\{f, H[\epsilon] + D[\xi^a]\} = \mathcal{L}_{(\epsilon/N,\xi^a + \epsilon N^a/N)}f$ on-shell (time direction $t^a = Nn^a + N^a$).

 \rightarrow Hypersurface deformation algebra of classical space-time (generalization of local Poincaré algebra):

$$\begin{cases} D(w_1^a), D(w_2^b) \\ &= D(\mathcal{L}_{w_1} w_2^a) \\ \{H(N), D(w^a)\} \\ &= -H(\mathcal{L}_w N) \\ \{H(N_1), H(N_2)\} \\ &= D(q^{ab}(N_1 \partial_b N_2 - N_2 \partial_b N_1)) \end{cases}$$

- Invariance under HDA implies general covariance. [Dirac, 1951]
- Second-order field equations invariant under HDA must equal GR. [Hojman, Kukař & Teitelboim, 1974-76]

4 **A** N A **B** N A **B** N

 \rightarrow The LQG corrections strongly modifies the dynamics through regularized (diffeomorphism and scalar) constraints.

Example: The effective Friedmann equation in LQC: $H^2 = \frac{8\pi G}{3}\rho \left(1 - \frac{\rho}{\rho_c}\right)$ due to the LQC Hamiltonian constraint: $\mathcal{H} = -\frac{3NV_0}{8\pi G} a \sin^2(\ell(a)\frac{\dot{a}}{N})/\ell^2(a)$

→ Gauge transformations, generated by constraints, represent coordinate freedom: space-time Lie derivative of a function given by $\{f, H[\epsilon] + D[\xi^a]\} = \mathcal{L}_{(\epsilon/N,\xi^a + \epsilon N^a/N)}f$ on-shell (time direction $t^a = Nn^a + N^a$).

 \rightarrow Hypersurface deformation algebra of classical space-time (generalization of local Poincaré algebra):

$$\begin{cases} D(w_1^a), D(w_2^b) \\ \{H(N), D(w^a)\} \\ \{H(N_1), H(N_2)\} \\ \end{cases} = D\left(\mathcal{L}_{w_1}w_2^a\right) \\ = -H\left(\mathcal{L}_w N\right) \\ \{H(N_1), H(N_2)\} \\ = D\left(q^{ab}\left(N_1\partial_b N_2 - N_2\partial_b N_1\right)\right) \end{cases}$$

- Invariance under HDA implies general covariance. [Dirac, 1951]
- Second-order field equations invariant under HDA must equal GR. [Hojman, Kukař & Teitelboim, 1974-76]

4 **A** N A **B** N A **B** N

 \rightarrow The LQG corrections strongly modifies the dynamics through regularized (diffeomorphism and scalar) constraints.

Example: The effective Friedmann equation in LQC: $H^2 = \frac{8\pi G}{3}\rho \left(1 - \frac{\rho}{\rho_c}\right)$ due to the LQC Hamiltonian constraint: $\mathcal{H} = -\frac{3NV_0}{8\pi G} a \sin^2(\ell(a)\frac{\dot{a}}{N})/\ell^2(a)$

→ Gauge transformations, generated by constraints, represent coordinate freedom: space-time Lie derivative of a function given by $\{f, H[\epsilon] + D[\xi^a]\} = \mathcal{L}_{(\epsilon/N,\xi^a + \epsilon N^a/N)}f$ on-shell (time direction $t^a = Nn^a + N^a$).

 \rightarrow Hypersurface deformation algebra of classical space-time (generalization of local Poincaré algebra):

$$\begin{cases} D(w_1^a), D(w_2^b) \\ &= D(\mathcal{L}_{w_1} w_2^a) \\ \{H(N), D(w^a) \} &= -H(\mathcal{L}_w N) \\ \{H(N_1), H(N_2) \} &= D\left(q^{ab}(N_1 \partial_b N_2 - N_2 \partial_b N_1)\right) \end{cases}$$

- Invariance under HDA implies general covariance. [Dirac, 1951]
- Second-order field equations invariant under HDA must equal GR. [Hojman, Kukař & Teitelboim, 1974-76]

→ Modified constraints, including LQG corrections, still form a closed algebra avoiding gauge anomalies. But deformations appear. $\{H(N_1), H(N_2)\} = D\left(\beta q^{ab}\left(N_1\partial_b N_2 - N_2\partial_b N_1\right)\right), \beta = \frac{d^2f}{dK^2} (\beta \rightarrow 1 \text{ classical}).$

 \rightarrow Both the Lagrangian density (opportunity) as well as the measure (structure of space-time itself) subject to quantum corrections $S[g] = \frac{1}{2\kappa} \int d^4x \sqrt{|\det g|} \ (R[g] + \cdots).$

 \rightarrow Field redefinition can absorb β to give standard HDA brackets *as long as* β does not change sign. EOMs are obviously still modified due to LQG corrections, but space-time can be classical locally.

 \rightarrow 'Dynamical Signature change' resolves classical singularity \Rightarrow New model of quantum spacetime with no Riemannian structure.

→ Invariant line-elements consistent with the deformed gauge transformations in LQG $ds^2 = -\beta N^2 dt^2 + q_{ab} (dx^a + N^a dt) (dx^b + N^b dt)$,

→ Modified constraints, including LQG corrections, still form a closed algebra avoiding gauge anomalies. But deformations appear. $\{H(N_1), H(N_2)\} = D\left(\beta q^{ab} \left(N_1 \partial_b N_2 - N_2 \partial_b N_1\right)\right), \ \beta = \frac{d^2 f}{dK^2} \ (\beta \to 1 \text{ classical}).$

→ Both the Lagrangian density (dynamics) as well as the measure (structure of space-time itself) subject to quantum corrections $S[g] = \frac{1}{2\kappa} \int d^4x \sqrt{|\det g|} \ (R[g] + \cdots).$

 \rightarrow Field redefinition can absorb β to give standard HDA brackets *as long as* β does not change sign. EOMs are obviously still modified due to LQG corrections, but space-time can be classical locally.

 \rightarrow 'Dynamical Signature change' resolves classical singularity \Rightarrow New model of quantum spacetime with no Riemannian structure.

→ Invariant line-elements consistent with the deformed gauge transformations in LQG $ds^2 = -\beta N^2 dt^2 + q_{ab} (dx^a + N^a dt) (dx^b + N^b dt)$,

→ Modified constraints, including LQG corrections, still form a closed algebra avoiding gauge anomalies. But deformations appear. $\{H(N_1), H(N_2)\} = D\left(\beta q^{ab} \left(N_1 \partial_b N_2 - N_2 \partial_b N_1\right)\right), \ \beta = \frac{d^2 f}{dK^2} \ (\beta \to 1 \text{ classical}).$

→ Both the Lagrangian density (dynamics) as well as the measure (structure of space-time itself) subject to quantum corrections $S[g] = \frac{1}{2\kappa} \int d^4x \sqrt{|\text{det}g|} \ (R[g] + \cdots).$

 \rightarrow Field redefinition can absorb β to give standard HDA brackets *as long as* β does not change sign. EOMs are obviously still modified due to LQG corrections, but space-time can be classical locally.

 \rightarrow 'Dynamical Signature change' resolves classical singularity \Rightarrow New model of quantum spacetime with no Riemannian structure.

 \rightarrow Invariant line-elements consistent with the deformed gauge transformations in LQG $ds^2 = -\beta N^2 dt^2 + q_{ab} (dx^a + N^a dt) (dx^b + N^b dt)$,

→ Modified constraints, including LQG corrections, still form a closed algebra avoiding gauge anomalies. But deformations appear. $\{H(N_1), H(N_2)\} = D\left(\beta q^{ab} \left(N_1 \partial_b N_2 - N_2 \partial_b N_1\right)\right), \ \beta = \frac{d^2 f}{dK^2} \ (\beta \to 1 \text{ classical}).$

→ Both the Lagrangian density (dynamics) as well as the measure (structure of space-time itself) subject to quantum corrections $S[g] = \frac{1}{2\kappa} \int d^4x \sqrt{|\det g|} \ (R[g] + \cdots).$

 \rightarrow Field redefinition can absorb β to give standard HDA brackets *as long as* β does not change sign. EOMs are obviously still modified due to LQG corrections, but space-time can be classical locally.

 \rightarrow 'Dynamical Signature change' resolves classical singularity \Rightarrow New model of quantum spacetime with no Riemannian structure.

→ Invariant line-elements consistent with the deformed gauge transformations in LQG $ds^2 = -\beta N^2 dt^2 + q_{ab} (dx^a + N^a dt) (dx^b + N^b dt)$,

→ Modified constraints, including LQG corrections, still form a closed algebra avoiding gauge anomalies. But deformations appear. $\{H(N_1), H(N_2)\} = D\left(\beta q^{ab} \left(N_1 \partial_b N_2 - N_2 \partial_b N_1\right)\right), \ \beta = \frac{d^2 f}{dK^2} \ (\beta \to 1 \text{ classical}).$

→ Both the Lagrangian density (dynamics) as well as the measure (structure of space-time itself) subject to quantum corrections $S[g] = \frac{1}{2\kappa} \int d^4x \sqrt{|\text{det}g|} \ (R[g] + \cdots).$

 \rightarrow Field redefinition can absorb β to give standard HDA brackets *as long as* β does not change sign. EOMs are obviously still modified due to LQG corrections, but space-time can be classical locally.

 \rightarrow 'Dynamical Signature change' resolves classical singularity \Rightarrow New model of quantum spacetime with no Riemannian structure.

→ Invariant line-elements consistent with the deformed gauge transformations in LQG $ds^2 = -\beta N^2 dt^2 + q_{ab} (dx^a + N^a dt) (dx^b + N^b dt)$,

→ Modified constraints, including LQG corrections, still form a closed algebra avoiding gauge anomalies. But deformations appear. $\{H(N_1), H(N_2)\} = D\left(\beta q^{ab} \left(N_1 \partial_b N_2 - N_2 \partial_b N_1\right)\right), \ \beta = \frac{d^2 f}{dK^2} \ (\beta \to 1 \text{ classical}).$

→ Both the Lagrangian density (dynamics) as well as the measure (structure of space-time itself) subject to quantum corrections $S[g] = \frac{1}{2\kappa} \int d^4x \sqrt{|\det g|} \ (R[g] + \cdots).$

 \rightarrow Field redefinition can absorb β to give standard HDA brackets *as long as* β does not change sign. EOMs are obviously still modified due to LQG corrections, but space-time can be classical locally.

 \rightarrow 'Dynamical Signature change' resolves classical singularity \Rightarrow New model of quantum spacetime with no Riemannian structure.

→ Invariant line-elements consistent with the deformed gauge transformations in LQG $ds^2 = -\beta N^2 dt^2 + q_{ab} (dx^a + N^a dt) (dx^b + N^b dt)$,

Emergence of non-Riemannian geometry

→ Lie algebroid: $(A, [., .]_A, \rho)$ with $\rho : \Gamma(A) \to \Gamma(TB)$, such that ρ satisfies a homomorphism of Lie algebras and a Leibnitz identity.

→ Hypersurface deformation brackets form a Lie algebroid → Phase space (q_{ab}, K^{ab}) forms base manifold → Lagrangian multipliers (N, N^a) forms $(4 \times \infty)$ -dimensional fibers. [C. Blohmann, M.Fernandez & A. Weinstein, 2010]

→ Deriving HDA: "g-Gaussian" vector fields $\Rightarrow n^{\mu} \mathcal{L}_{\nu} g_{\mu\nu} = 0$, preserving Gaussian form of the metric $ds^2 = -\epsilon dt^2 + q_{ab} dx^a dx^b$.

→ Lie algebroid morphisms can change the deformation function $\beta(q_{ab}, K^{ab})$:[M. Bojowald, S.B., U. Büyükçam & F. D'Ambrosio, 2016]

- $q_{ab} \mapsto |\beta|^{-1} q_{ab}$ generated by base transformations.
- $N \mapsto \sqrt{|\beta|^{-1}}N$ generated by fiber maps (same as a non-standard normal for β spatially constant).

No algebroid morphisms can remove $\operatorname{sgn}(\beta) \Rightarrow \operatorname{No}(\operatorname{global})$ Riemannian structure when β changes sign.